Multilevel Monte Carlo methods for ensemble variational data assimilation

<p>Ensemble variational data assimilation relies on ensembles of forecasts to estimate the background error covariance matrix <span class="inline-formula"><strong>B</strong></span>. The ensemble can be provided by an ensemble of data assimilations (EDA), which...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Destouches, P. Mycek, S. Gürol, A. T. Weaver, S. Gratton, E. Simon
Format: Article
Language:English
Published: Copernicus Publications 2025-06-01
Series:Nonlinear Processes in Geophysics
Online Access:https://npg.copernicus.org/articles/32/167/2025/npg-32-167-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850167187412615168
author M. Destouches
M. Destouches
M. Destouches
P. Mycek
P. Mycek
S. Gürol
S. Gürol
A. T. Weaver
A. T. Weaver
S. Gratton
E. Simon
author_facet M. Destouches
M. Destouches
M. Destouches
P. Mycek
P. Mycek
S. Gürol
S. Gürol
A. T. Weaver
A. T. Weaver
S. Gratton
E. Simon
author_sort M. Destouches
collection DOAJ
description <p>Ensemble variational data assimilation relies on ensembles of forecasts to estimate the background error covariance matrix <span class="inline-formula"><strong>B</strong></span>. The ensemble can be provided by an ensemble of data assimilations (EDA), which runs independent perturbed data assimilation and forecast steps. The accuracy of the ensemble estimator of <span class="inline-formula"><strong>B</strong></span> is strongly limited by the small ensemble size that is needed to keep the EDA computationally affordable. Here we investigate the potential of the multilevel Monte Carlo (MLMC) method, a type of multifidelity Monte Carlo method, to improve the accuracy of the standard Monte Carlo estimator of <span class="inline-formula"><strong>B</strong></span> while keeping the computational cost of ensemble generation comparable. MLMC exploits the availability of a range of discretization grids, thus shifting part of the computational work from the original assimilation grid to coarser ones. MLMC differs from the mere averaging of statistical estimators, as it ensures that no bias from the coarse-resolution grids is introduced in the estimation. The implications for ensemble variational data assimilation systems based on EDAs are discussed. Numerical experiments with a quasi-geostrophic model demonstrate the potential of the approach, as MLMC yields more accurate background error covariances and reduced analysis error. The challenges involved in cycling a multilevel variational data assimilation system are identified and discussed.</p>
format Article
id doaj-art-c31a88a8595446ae97a3ad75d92cd2a9
institution OA Journals
issn 1023-5809
1607-7946
language English
publishDate 2025-06-01
publisher Copernicus Publications
record_format Article
series Nonlinear Processes in Geophysics
spelling doaj-art-c31a88a8595446ae97a3ad75d92cd2a92025-08-20T02:21:14ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462025-06-013216718710.5194/npg-32-167-2025Multilevel Monte Carlo methods for ensemble variational data assimilationM. Destouches0M. Destouches1M. Destouches2P. Mycek3P. Mycek4S. Gürol5S. Gürol6A. T. Weaver7A. T. Weaver8S. Gratton9E. Simon10CERFACS, Toulouse, FranceCECI, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, FranceMet Office, Exeter, United KingdomCERFACS, Toulouse, FranceCECI, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, FranceCERFACS, Toulouse, FranceCECI, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, FranceCERFACS, Toulouse, FranceCECI, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, FranceINPT-IRIT, Toulouse, FranceINPT-IRIT, Toulouse, France<p>Ensemble variational data assimilation relies on ensembles of forecasts to estimate the background error covariance matrix <span class="inline-formula"><strong>B</strong></span>. The ensemble can be provided by an ensemble of data assimilations (EDA), which runs independent perturbed data assimilation and forecast steps. The accuracy of the ensemble estimator of <span class="inline-formula"><strong>B</strong></span> is strongly limited by the small ensemble size that is needed to keep the EDA computationally affordable. Here we investigate the potential of the multilevel Monte Carlo (MLMC) method, a type of multifidelity Monte Carlo method, to improve the accuracy of the standard Monte Carlo estimator of <span class="inline-formula"><strong>B</strong></span> while keeping the computational cost of ensemble generation comparable. MLMC exploits the availability of a range of discretization grids, thus shifting part of the computational work from the original assimilation grid to coarser ones. MLMC differs from the mere averaging of statistical estimators, as it ensures that no bias from the coarse-resolution grids is introduced in the estimation. The implications for ensemble variational data assimilation systems based on EDAs are discussed. Numerical experiments with a quasi-geostrophic model demonstrate the potential of the approach, as MLMC yields more accurate background error covariances and reduced analysis error. The challenges involved in cycling a multilevel variational data assimilation system are identified and discussed.</p>https://npg.copernicus.org/articles/32/167/2025/npg-32-167-2025.pdf
spellingShingle M. Destouches
M. Destouches
M. Destouches
P. Mycek
P. Mycek
S. Gürol
S. Gürol
A. T. Weaver
A. T. Weaver
S. Gratton
E. Simon
Multilevel Monte Carlo methods for ensemble variational data assimilation
Nonlinear Processes in Geophysics
title Multilevel Monte Carlo methods for ensemble variational data assimilation
title_full Multilevel Monte Carlo methods for ensemble variational data assimilation
title_fullStr Multilevel Monte Carlo methods for ensemble variational data assimilation
title_full_unstemmed Multilevel Monte Carlo methods for ensemble variational data assimilation
title_short Multilevel Monte Carlo methods for ensemble variational data assimilation
title_sort multilevel monte carlo methods for ensemble variational data assimilation
url https://npg.copernicus.org/articles/32/167/2025/npg-32-167-2025.pdf
work_keys_str_mv AT mdestouches multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT mdestouches multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT mdestouches multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT pmycek multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT pmycek multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT sgurol multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT sgurol multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT atweaver multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT atweaver multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT sgratton multilevelmontecarlomethodsforensemblevariationaldataassimilation
AT esimon multilevelmontecarlomethodsforensemblevariationaldataassimilation