Hands-On Introduction to Quantum Machine Learning
This tutorial covers a hands-on introduction to quantum machine learning. Foundational concepts of quantum information science (QIS) are presented (qubits, single and multiple qubit gates, measurements, and entanglement). Building on that, foundational concepts of quantum machine learning (QML) are...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2024-05-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/135478 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This tutorial covers a hands-on introduction to quantum machine learning. Foundational concepts of quantum information science (QIS) are presented (qubits, single and multiple qubit gates, measurements, and entanglement). Building on that, foundational concepts of quantum machine learning (QML) are introduced (parametrized circuits, data encoding, and feature mapping). Then, QML models are discussed (quantum support vector machine, quantum feedforward neural network, and quantum convolutional neural network). All the aforementioned topics and concepts are examined using codes run on a quantum computer simulator. All the covered materials assume a novice audience interested in learning about QML. Further reading and software packages and frameworks are shared with the audience. |
|---|---|
| ISSN: | 2334-0754 2334-0762 |