Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities
This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2017/4247365 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth on (x,y), an existence result of odd 2π-periodic solutions is obtained via Leray-Schauder fixed point theorem. |
---|---|
ISSN: | 2314-8896 2314-8888 |