Rings all of whose additive group endomorphisms are left multiplications
Motivated by Cauchy's functional equation f(x+y)=f(x)+f(y), we study in §1 special rings, namely, rings for which every endomorphism f of their additive group is of the form f(x)≡ax. In §2 we generalize to R algebras (R a fixed commutative ring) and give a classification theorem when R is a com...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1984-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171284000314 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Motivated by Cauchy's functional equation f(x+y)=f(x)+f(y), we study in §1 special rings, namely, rings for which every endomorphism f of their additive group is of the form f(x)≡ax. In §2 we generalize to R algebras (R a fixed commutative ring) and give a classification theorem when R is a complete discrete valuation ring. This result has an interesting consequence, Proposition 12, for the theory of special rings. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |