A User-Friendly Machine Learning Pipeline for Automated Leaf Segmentation in
Automated leaf segmentation pipelines must balance accuracy, scalability, and usability to be readily adopted in plant research. We present an end-to-end deep learning pipeline designed for practical use in plant phenotyping, which we developed and evaluated during a real-world plant growth experime...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SAGE Publishing
2025-06-01
|
| Series: | Bioinformatics and Biology Insights |
| Online Access: | https://doi.org/10.1177/11779322251344033 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Automated leaf segmentation pipelines must balance accuracy, scalability, and usability to be readily adopted in plant research. We present an end-to-end deep learning pipeline designed for practical use in plant phenotyping, which we developed and evaluated during a real-world plant growth experiment using Atriplex lentiformis . The pipeline integrates a fine-tuned Mask Region-based Convolutional Neural Network (Mask R-CNN) segmentation model trained on 176 plant images and achieves high performance despite the small training data set (Dice coefficient = 0.781). We quantitatively compare the fine-tuned Mask R-CNN model to Meta AI’s Segment Anything Model (SAM) and evaluate natural language prompts using Grounded SAM and the Leaf-Only SAM post-processing pipeline for refining segmentation outputs. Our findings highlight that transfer learning on a specialized data set can still outperform a large foundation model in domain-specific tasks. In addition, we integrate QR codes for automated sample identification and benchmark multiple QR code decoding libraries, evaluating their robustness under real-world imaging conditions like distortion and lighting variation. To ensure accessibility, we deploy the pipeline as a user-friendly Streamlit web application, allowing researchers to analyze images without deep learning expertise. By focusing on practical deployment in addition to model performance, this study provides an open-source, scalable framework for plant science applications and addresses real-world challenges in automation and usability by the end-researcher. |
|---|---|
| ISSN: | 1177-9322 |