Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source

A comprehensive numerical investigation of two-dimensional, steady, laminar magneto–hydrodynamic (MHD) mixed convection in a trapezoidal cavity filled with a nano-encapsulated phase–change material (NEPCM) suspension is presented. A star‑shaped heat source located at the cavity centre rotates with a...

Full description

Saved in:
Bibliographic Details
Main Authors: Aissa Abderrahmane, Houssem Laidoudi, Abdeldjalil Belazreg, Obai Younis, Hamoud A. Al-Nehari, Riadh Marzouki
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379725002918
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849233571420569600
author Aissa Abderrahmane
Houssem Laidoudi
Abdeldjalil Belazreg
Obai Younis
Hamoud A. Al-Nehari
Riadh Marzouki
author_facet Aissa Abderrahmane
Houssem Laidoudi
Abdeldjalil Belazreg
Obai Younis
Hamoud A. Al-Nehari
Riadh Marzouki
author_sort Aissa Abderrahmane
collection DOAJ
description A comprehensive numerical investigation of two-dimensional, steady, laminar magneto–hydrodynamic (MHD) mixed convection in a trapezoidal cavity filled with a nano-encapsulated phase–change material (NEPCM) suspension is presented. A star‑shaped heat source located at the cavity centre rotates with a constant angular velocity, while a uniform transverse magnetic field acts on the flow. The physical model couples the energy equation with a temperature–dependent effective specific heat formulation to represent the phase transition of NEPCM particles. The dimensionless governing equations are solved using a Galerkin weighted residual finite‑element method. Detailed parametric studies are carried out for Reynolds number Re = 10–1000, Darcy number Da = 10−6–10−2, Hartmann number Ha = 0–100 and NEPCM volume fraction φ = 0–0.08. Grid independence and code verification against benchmark solutions are demonstrated. Results reveal that increasing Re and Da enhances the average Nusselt number by up to 47 % and 23 %, respectively, whereas an 8 % NEPCM loading yields a modest ≈2 % enhancement due to increased slurry viscosity. Lorentz forces progressively damp convective rolls, reducing heat transfer at Ha > 40. The unique combination of a rotating internal heater, complex cavity geometry, and phase‑change suspension provides new insights for the design of compact thermal energy‑storage and electronics‑cooling devices.
format Article
id doaj-art-c28bd6c8ff314ee89cc90c9b0899b3e2
institution Kabale University
issn 2211-3797
language English
publishDate 2025-09-01
publisher Elsevier
record_format Article
series Results in Physics
spelling doaj-art-c28bd6c8ff314ee89cc90c9b0899b3e22025-08-20T05:06:26ZengElsevierResults in Physics2211-37972025-09-017610839710.1016/j.rinp.2025.108397Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat sourceAissa Abderrahmane0Houssem Laidoudi1Abdeldjalil Belazreg2Obai Younis3Hamoud A. Al-Nehari4Riadh Marzouki5Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara, AlgeriaFaculty of Mechanical Engineering, University of Oran, Oran 31000, AlgeriaLaboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara, AlgeriaDepartment of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Saudi ArabiaDepartment of Mechanical Engineering, Faculty of Engineering, Sana’a University, P.O. Box 12544, Sana’a, Yemen; Corresponding author.Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi ArabiaA comprehensive numerical investigation of two-dimensional, steady, laminar magneto–hydrodynamic (MHD) mixed convection in a trapezoidal cavity filled with a nano-encapsulated phase–change material (NEPCM) suspension is presented. A star‑shaped heat source located at the cavity centre rotates with a constant angular velocity, while a uniform transverse magnetic field acts on the flow. The physical model couples the energy equation with a temperature–dependent effective specific heat formulation to represent the phase transition of NEPCM particles. The dimensionless governing equations are solved using a Galerkin weighted residual finite‑element method. Detailed parametric studies are carried out for Reynolds number Re = 10–1000, Darcy number Da = 10−6–10−2, Hartmann number Ha = 0–100 and NEPCM volume fraction φ = 0–0.08. Grid independence and code verification against benchmark solutions are demonstrated. Results reveal that increasing Re and Da enhances the average Nusselt number by up to 47 % and 23 %, respectively, whereas an 8 % NEPCM loading yields a modest ≈2 % enhancement due to increased slurry viscosity. Lorentz forces progressively damp convective rolls, reducing heat transfer at Ha > 40. The unique combination of a rotating internal heater, complex cavity geometry, and phase‑change suspension provides new insights for the design of compact thermal energy‑storage and electronics‑cooling devices.http://www.sciencedirect.com/science/article/pii/S2211379725002918Mixed convectionMagneto‑hydrodynamicsNEPCM suspensionRotating heat sourceFinite‑element methodTrapezoidal cavity
spellingShingle Aissa Abderrahmane
Houssem Laidoudi
Abdeldjalil Belazreg
Obai Younis
Hamoud A. Al-Nehari
Riadh Marzouki
Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
Results in Physics
Mixed convection
Magneto‑hydrodynamics
NEPCM suspension
Rotating heat source
Finite‑element method
Trapezoidal cavity
title Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
title_full Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
title_fullStr Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
title_full_unstemmed Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
title_short Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source
title_sort parametric study of mhd mixed convection heat transfer in a trapezoidal cavity with nepcm suspension and rotating star shaped heat source
topic Mixed convection
Magneto‑hydrodynamics
NEPCM suspension
Rotating heat source
Finite‑element method
Trapezoidal cavity
url http://www.sciencedirect.com/science/article/pii/S2211379725002918
work_keys_str_mv AT aissaabderrahmane parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource
AT houssemlaidoudi parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource
AT abdeldjalilbelazreg parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource
AT obaiyounis parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource
AT hamoudaalnehari parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource
AT riadhmarzouki parametricstudyofmhdmixedconvectionheattransferinatrapezoidalcavitywithnepcmsuspensionandrotatingstarshapedheatsource