Improved Analysis for Squeezing of Newtonian Material between Two Circular Plates

This article presents a scheme for the analysis of an unsteady axisymmetric flow of incompressible Newtonian material in the form of liquid squeezed between two circular plates. The scheme combines traditional perturbation technique with homotopy using an adaptation of the Laplace Transform. The pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Omar Khan, Mubashir Qayyum, Hamid Khan, Murtaza Ali
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2017/5703291
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a scheme for the analysis of an unsteady axisymmetric flow of incompressible Newtonian material in the form of liquid squeezed between two circular plates. The scheme combines traditional perturbation technique with homotopy using an adaptation of the Laplace Transform. The proposed method is tested against other schemes such as the Regular Perturbation Method (RPM), Homotopy Perturbation Method (HPM), Optimal Homotopy Asymptotic Method (OHAM), and the fourth-order Explicit Runge-Kutta Method (ERK4). Comparison of the solutions along with absolute residual errors confirms that the proposed scheme surpasses HPM, OHAM, RPM, and ERK4 in terms of accuracy. The article also investigates the effect of Reynolds number on the velocity profile and pressure variation graphically.
ISSN:1687-8434
1687-8442