Features of Electronic Transport Properties in All-Carbon Films Based on Bilayer Graphene and Single-Walled Nanotubes

In this paper, we conduct a detailed in silico study of the role of topological features in the electronic transport properties of all-carbon films. To create all-carbon film supercells, we used AA- and AB-stacked bilayer graphene, as well as (5,5), (6,0), (16,0), (12,6), and (8,4) single-walled car...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael M. Slepchenkov, Pavel V. Barkov, Olga E. Glukhova
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/15/5/445
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we conduct a detailed in silico study of the role of topological features in the electronic transport properties of all-carbon films. To create all-carbon film supercells, we used AA- and AB-stacked bilayer graphene, as well as (5,5), (6,0), (16,0), (12,6), and (8,4) single-walled carbon nanotubes (SWCNTs). For the first time, the simultaneous influence of several topological features on the quantum transport of electrons in graphene–nanotube films are considered. Topological features are understood as the topological type of nanotubes (chiral or achiral), the stacking order in bilayer graphene (AA or AB), and the mutual orientation of bilayer graphene and nanotubes. A characteristic feature of the studied all-carbon films is the presence of electrical conductivity anisotropy. Moreover, depending on the topological features of all-carbon films, the values of electrical resistance can differ by tens of times in different directions of electron transport. The patterns of formation of the profile of the electron transmission function of the studied structural configurations of all-carbon film are established. It is found that the mutual orientation of bilayer graphene and nanotubes plays an important role in the electronic transport properties of all-carbon films. The obtained results make a significant contribution to the understanding of the mechanisms controlling the electrical conductivity properties of all-carbon films at the atomic level.
ISSN:2073-4352