Cyclic quantum annealing: searching for deep low-energy states in 5000-qubit spin glass
Abstract Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave’s 5000-qubit quantum processor, we de...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-80761-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave’s 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time. We also find intricate structures in a low-energy landscape of spin glasses, such as a power-law distribution of connected clusters with a small surface energy. These observations offer guidance for further improvement of the optimization algorithms. |
---|---|
ISSN: | 2045-2322 |