Comparative Study of Visual Feature for Bimodal Hindi Speech Recognition

In building speech recognition based applications, robustness to different noisy background condition is an important challenge. In this paper bimodal approach is proposed to improve the robustness of Hindi speech recognition system. Also an importance of different types of visual features is studie...

Full description

Saved in:
Bibliographic Details
Main Authors: Prashant UPADHYAYA, Omar FAROOQ, Musiur Raza ABIDI, Priyanka VARSHNEY
Format: Article
Language:English
Published: Institute of Fundamental Technological Research Polish Academy of Sciences 2015-09-01
Series:Archives of Acoustics
Subjects:
Online Access:https://acoustics.ippt.pan.pl/index.php/aa/article/view/1607
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In building speech recognition based applications, robustness to different noisy background condition is an important challenge. In this paper bimodal approach is proposed to improve the robustness of Hindi speech recognition system. Also an importance of different types of visual features is studied for audio visual automatic speech recognition (AVASR) system under diverse noisy audio conditions. Four sets of visual feature based on Two-Dimensional Discrete Cosine Transform feature (2D-DCT), Principal Component Analysis (PCA), Two-Dimensional Discrete Wavelet Transform followed by DCT (2D-DWT-DCT) and Two-Dimensional Discrete Wavelet Transform followed by PCA (2D-DWT-PCA) are reported. The audio features are extracted using Mel Frequency Cepstral coefficients (MFCC) followed by static and dynamic feature. Overall, 48 features, i.e. 39 audio features and 9 visual features are used for measuring the performance of the AVASR system. Also, the performance of the AVASR using noisy speech signal generated by using NOISEX database is evaluated for different Signal to Noise ratio (SNR: 30 dB to -10 dB) using Aligarh Muslim University Audio Visual (AMUAV) Hindi corpus. AMUAV corpus is Hindi continuous speech high quality audio visual databases of Hindi sentences spoken by different subjects.
ISSN:0137-5075
2300-262X