Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method

In this note, we consider an evolution coercive Hamilton–Jacobi equation posed in a domain and supplemented with a boundary condition. We are interested in proving a comparison principle in the case where the time and the (normal) gradient variables are strongly coupled at the boundary. We elaborate...

Full description

Saved in:
Bibliographic Details
Main Authors: Forcadel, Nicolas, Imbert, Cyril, Monneau, Régis
Format: Article
Language:English
Published: Académie des sciences 2024-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.591/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206184327512064
author Forcadel, Nicolas
Imbert, Cyril
Monneau, Régis
author_facet Forcadel, Nicolas
Imbert, Cyril
Monneau, Régis
author_sort Forcadel, Nicolas
collection DOAJ
description In this note, we consider an evolution coercive Hamilton–Jacobi equation posed in a domain and supplemented with a boundary condition. We are interested in proving a comparison principle in the case where the time and the (normal) gradient variables are strongly coupled at the boundary. We elaborate on a method introduced by P.-L. Lions and P. Souganidis (Atti Accad. Naz. Lincei, 2017) to extend their comparison principle to more general boundary conditions and to Hamiltonians that are not globally Lipschitz continuous in the time variable. Their argument relies on a single blow-up procedure after rescaling the semi-solutions to be compared. In this work, two blow-ups are performed simultaneously, one for each variable of the doubling variable method. We show a key one-sided Lipschitz estimate satisfied by a combination of the two blow-up limits. Both blow-up limits are a priori allowed to be infinite separately. For expository reasons, the result is presented here in the framework of space dimension one and the general case is treated in a companion paper.
format Article
id doaj-art-c2269220b0a844f6a05c800b44ce1060
institution Kabale University
issn 1778-3569
language English
publishDate 2024-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-c2269220b0a844f6a05c800b44ce10602025-02-07T11:22:49ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-10-01362G882983910.5802/crmath.59110.5802/crmath.591Coercive Hamilton–Jacobi equations in domains: the twin blow-ups methodForcadel, Nicolas0Imbert, Cyril1Monneau, Régis2LMI - Laboratoire de Mathématiques de l’INSA de Rouen Normandie, 685 Avenue de l’Université 76800 Saint-Etienne-du-Rouvray - FranceDépartement de mathématiques et applications, ENS-PSL & CNRS, 45 rue d’Ulm, 75005 Paris, France.CEREMADE - CEntre de REcherches en MAthématiques de la DEcision, Place du Maréchal de Lattre de Tassigny 75775 - Paris Cedex 16 - France; CERMICS - Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique, 6 et 8 avenue Blaise Pascal Cité Descartes - Champs sur Marne 77455 Marne la Vallée Cedex 2 - FranceIn this note, we consider an evolution coercive Hamilton–Jacobi equation posed in a domain and supplemented with a boundary condition. We are interested in proving a comparison principle in the case where the time and the (normal) gradient variables are strongly coupled at the boundary. We elaborate on a method introduced by P.-L. Lions and P. Souganidis (Atti Accad. Naz. Lincei, 2017) to extend their comparison principle to more general boundary conditions and to Hamiltonians that are not globally Lipschitz continuous in the time variable. Their argument relies on a single blow-up procedure after rescaling the semi-solutions to be compared. In this work, two blow-ups are performed simultaneously, one for each variable of the doubling variable method. We show a key one-sided Lipschitz estimate satisfied by a combination of the two blow-up limits. Both blow-up limits are a priori allowed to be infinite separately. For expository reasons, the result is presented here in the framework of space dimension one and the general case is treated in a companion paper.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.591/
spellingShingle Forcadel, Nicolas
Imbert, Cyril
Monneau, Régis
Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
Comptes Rendus. Mathématique
title Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
title_full Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
title_fullStr Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
title_full_unstemmed Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
title_short Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method
title_sort coercive hamilton jacobi equations in domains the twin blow ups method
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.591/
work_keys_str_mv AT forcadelnicolas coercivehamiltonjacobiequationsindomainsthetwinblowupsmethod
AT imbertcyril coercivehamiltonjacobiequationsindomainsthetwinblowupsmethod
AT monneauregis coercivehamiltonjacobiequationsindomainsthetwinblowupsmethod