Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow

The local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions.

Saved in:
Bibliographic Details
Main Authors: Xiao-Feng Niu, Cai-Li Zhang, Zheng-Biao Li, Yang Zhao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/872318
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849684316292907008
author Xiao-Feng Niu
Cai-Li Zhang
Zheng-Biao Li
Yang Zhao
author_facet Xiao-Feng Niu
Cai-Li Zhang
Zheng-Biao Li
Yang Zhao
author_sort Xiao-Feng Niu
collection DOAJ
description The local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions.
format Article
id doaj-art-c1fc05ec29084cd49719adda6ffbb7c5
institution DOAJ
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-c1fc05ec29084cd49719adda6ffbb7c52025-08-20T03:23:30ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/872318872318Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic FlowXiao-Feng Niu0Cai-Li Zhang1Zheng-Biao Li2Yang Zhao3College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Mathematics and Information Science, Qujing Normal University, Qujing, Yunnan 655011, ChinaDepartment of Electronic and Information Technology, Jiangmen Polytechnic, Jiangmen 529090, ChinaThe local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions.http://dx.doi.org/10.1155/2014/872318
spellingShingle Xiao-Feng Niu
Cai-Li Zhang
Zheng-Biao Li
Yang Zhao
Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
Abstract and Applied Analysis
title Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
title_full Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
title_fullStr Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
title_full_unstemmed Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
title_short Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
title_sort local fractional derivative boundary value problems for tricomi equation arising in fractal transonic flow
url http://dx.doi.org/10.1155/2014/872318
work_keys_str_mv AT xiaofengniu localfractionalderivativeboundaryvalueproblemsfortricomiequationarisinginfractaltransonicflow
AT cailizhang localfractionalderivativeboundaryvalueproblemsfortricomiequationarisinginfractaltransonicflow
AT zhengbiaoli localfractionalderivativeboundaryvalueproblemsfortricomiequationarisinginfractaltransonicflow
AT yangzhao localfractionalderivativeboundaryvalueproblemsfortricomiequationarisinginfractaltransonicflow