Self-driving lab for the photochemical synthesis of plasmonic nanoparticles with targeted structural and optical properties

Abstract Many applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianyi Wu, Sina Kheiri, Riley J. Hickman, Huachen Tao, Tony C. Wu, Zhi-Bo Yang, Xin Ge, Wei Zhang, Milad Abolhasani, Kun Liu, Alan Aspuru-Guzik, Eugenia Kumacheva
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56788-9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Many applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming and resource-intensive trial-and-error process, however closed-loop nanoparticle synthesis enables the accelerated exploration of large chemical spaces without human intervention. Here, we introduce the Autonomous Fluidic Identification and Optimization Nanochemistry (AFION) self-driving lab that integrates a microfluidic reactor, in-flow spectroscopic nanoparticle characterization, and machine learning for the exploration and optimization of the multidimensional chemical space for the photochemical synthesis of plasmonic nanoparticles. By targeting spectroscopic nanoparticle properties, the AFION lab identifies reaction conditions for the synthesis of different types of nanoparticles with designated shapes, morphologies, and compositions. Data analysis provides insight into the role of reaction conditions for the synthesis of the targeted nanoparticle type. This work shows that the AFION lab is an effective exploration platform for on-demand synthesis of plasmonic nanoparticles.
ISSN:2041-1723