Improved FraSegNet-Based Rock Nodule Identification Method and Application
Extracting nodal features is crucial for analyzing rock structure stability and plays a significant role in designing engineering projects. This study presents an enhanced version of the FraSegNet algorithm, focusing on improving its ability to identify nodal features in images. The updated FraSegNe...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/8/4314 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Extracting nodal features is crucial for analyzing rock structure stability and plays a significant role in designing engineering projects. This study presents an enhanced version of the FraSegNet algorithm, focusing on improving its ability to identify nodal features in images. The updated FraSegNet incorporates the ResNet101 backbone and integrates the Squeeze-and-Excitation (SE) attention mechanism, enabling better concentration on key nodal characteristics. The primary improvements are as follows: (1) Multi-scale feature extraction: Leveraging the ResNet101 architecture for the effective extraction of detailed information from nodal images. (2) Better attention mechanisms: The SE module focuses on nodal regions, resulting in clearer and more refined feature representations. (3) Dynamic learning strategies: I incorporation of cosine annealing and warm-up techniques to optimize training efficiency. The algorithm was validated with the Barton–Bandis model and Hoek–Brown criterion. The experimental results demonstrate its superior performance, achieving 97.1% accuracy in nodal feature detection with an average error of only 1.5% compared to the rock mass parameter. This small error proves the model works well. FraSegNet offers accurate segmentation and precise geometric parameter extraction, making it a valuable tool for advancing rock stability analysis and practical applications in rock mechanics. |
|---|---|
| ISSN: | 2076-3417 |