Rock Dynamic Fracture Characteristics by Mini-Linear Shaped Charge Jet Penetration: A Case Study

An insignificant number of studies have focused on employing penetration using mini-linear shaped charge jets for directionally controlled splitting of massive rocks. In this study, we adopt a numerical calculation method to simulate the penetration and formation of the main splitting surface of a c...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenyang Xu, Xin Liu, Hongyi Mo, Lianjun Guo, Jun Yang
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2022/2039225
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An insignificant number of studies have focused on employing penetration using mini-linear shaped charge jets for directionally controlled splitting of massive rocks. In this study, we adopt a numerical calculation method to simulate the penetration and formation of the main splitting surface of a concrete specimen, considering a wedge angle of 45° in both processes. The surface on the principal axial plane is found to split first due to linear jet penetration. In the case of single primary-plane splitting, cracks appear at both ends of the long axis of the penetration crack and the splitting surface extends diagonally from the center of the penetration. A transverse crack separates the splitting surface and the radial-fracture surface, and the degree of fracture decreases along the direction of the height of the specimen. Finally, a realistic physical model demonstrating penetration using a mini-linearshaped charge jet is established. It is a rapid and safe blasting technology to handle hazardous massive rocks during emergency rescuing or mining.
ISSN:1687-8094