On the number of residues of certain second-order linear recurrences
For every monic polynomial $f \in \mathbb{Z}[X]$ with $\deg (f) \ge 1$, let $\mathcal{L}(f)$ be the set of all linear recurrences with values in $\mathbb{Z}$ and characteristic polynomial $f$, and let \begin{equation*} \mathcal{R}(f) :=\big \lbrace \rho (x; m) : x \in \mathcal{L}(f), \, m \in \math...
Saved in:
Main Authors: | Accossato, Federico, Sanna, Carlo |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Encenando os Múltiplos e Divisores
by: Gabriela Dos Santos Barbosa
Published: (2004-01-01) -
A Profile of Primitive Culture /
by: Service, Elman R. (Elman Rogers), 1915-1996
Published: (1958) -
Anatomical regions of residual hemorrhage in chronic subdural hematoma
by: Abdullah Emre Taçyıldız, et al.
Published: (2025-02-01) -
Decoding the Genetics of Recurrent Molar Pregnancy
by: Sumita Mehta, et al.
Published: (2024-01-01) -
Loop group schemes and Abhyankar’s lemma
by: Gille, Philippe
Published: (2024-03-01)