Determination of the Mechanical Properties of Friction Welded Tube Yoke and Tube Joint

This paper deals with the friction welding of the tube yoke and the tube of the drive shaft used in light commercial vehicles. Tube yoke made from hot forged microalloyed steel and the tube made from cold drawn steel, with a ratio (thickness/outside diameter ratio) of less than 0.1, were successfull...

Full description

Saved in:
Bibliographic Details
Main Authors: Efe Işık, Çiçek Özes
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/8918253
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the friction welding of the tube yoke and the tube of the drive shaft used in light commercial vehicles. Tube yoke made from hot forged microalloyed steel and the tube made from cold drawn steel, with a ratio (thickness/outside diameter ratio) of less than 0.1, were successfully welded by friction welding method. Hardness distributions on both sides of the welded joint across the welding interface were determined and the microstructure of the joint was investigated. Furthermore, joint strength was tested under tensile, static torsional, and torsional fatigue loadings. The tested data were analyzed by Weibull distribution. The maximum hardness value along the welded joint was detected as 553 Hv1. The lowest detected tensile strength of the joint was 13% less than the base materials’ tensile strength. The torsional load carrying capacity of the friction welded thin walled tubular joint without any damage was obtained as 4.252,5 Nm in 95% confidence interval. After conducting fully reversed torsional fatigue tests, the fatigue life of friction welded tubular joints was detected as 220.066,3 cycles.
ISSN:1687-8434
1687-8442