Enhancement of Lipid Production in <i>Rhodosporidium toruloides</i>: Designing Feeding Strategies Through Dynamic Flux Balance Analysis

Fed-batch cultivation is a widely used strategy for microbial lipid production, offering flexibility in nutrient control and the potential for high lipid productivity. However, optimizing feeding strategies remains a complex challenge, as it depends on multiple factors, including strain-specific met...

Full description

Saved in:
Bibliographic Details
Main Authors: María Teresita Castañeda, Sebastián Nuñez, Martín Jamilis, Hernán De Battista
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fermentation
Subjects:
Online Access:https://www.mdpi.com/2311-5637/11/6/354
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fed-batch cultivation is a widely used strategy for microbial lipid production, offering flexibility in nutrient control and the potential for high lipid productivity. However, optimizing feeding strategies remains a complex challenge, as it depends on multiple factors, including strain-specific metabolism and process limitations. In this study, we developed a computational framework based on dynamic flux balance analysis and small-scale metabolic models to evaluate and optimize lipid production in <i>Rhodosporidium toruloides</i> strains. We proposed equations to estimate both the carbon and energy source mass feed rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mrow><mi>i</mi><mi>n</mi></mrow></msub><mspace width="0.166667em"></mspace><mo>·</mo><mspace width="0.166667em"></mspace><msub><mi>s</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>) and its concentration in the feed (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>s</mi><mi>r</mi></msub></semantics></math></inline-formula>) based on lipid accumulation targets, and defined minimum feeding flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>i</mi><mi>n</mi></mrow></msub></semantics></math></inline-formula>) according to process duration. We then assessed the impact of these parameters on commonly used bioprocess metrics—lipid yield, titer, productivity, and intracellular accumulation—across wild-type and engineered strains. Our results showed that the selection of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mrow><mi>i</mi><mi>n</mi></mrow></msub><mspace width="0.166667em"></mspace><mo>·</mo><mspace width="0.166667em"></mspace><msub><mi>s</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula> was strongly strain-dependent and significantly influenced strain performance. Moreover, for a given <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mrow><mi>i</mi><mi>n</mi></mrow></msub><mspace width="0.166667em"></mspace><mo>·</mo><mspace width="0.166667em"></mspace><msub><mi>s</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>, the specific values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>s</mi><mi>r</mi></msub></semantics></math></inline-formula>, and the resulting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>i</mi><mi>n</mi></mrow></msub></semantics></math></inline-formula>, had distinct and non-equivalent effects on performance metrics. This methodology enables the rational pre-selection of feeding strategies and strains, improving resource efficiency and reducing the probability of failed experiments.
ISSN:2311-5637