Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients

Saved in:
Bibliographic Details
Main Authors: Chaoqun Huang, Shangzhi Shu, Miaomiao Zhou, Zhenming Sun, Shuyan Li
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737704/?tool=EBI
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592746033971200
author Chaoqun Huang
Shangzhi Shu
Miaomiao Zhou
Zhenming Sun
Shuyan Li
author_facet Chaoqun Huang
Shangzhi Shu
Miaomiao Zhou
Zhenming Sun
Shuyan Li
author_sort Chaoqun Huang
collection DOAJ
format Article
id doaj-art-c12618ea06be4623b6e419997d72e6c5
institution Kabale University
issn 1932-6203
language English
publishDate 2025-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-c12618ea06be4623b6e419997d72e6c52025-01-21T05:31:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032025-01-01201Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patientsChaoqun HuangShangzhi ShuMiaomiao ZhouZhenming SunShuyan Lihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737704/?tool=EBI
spellingShingle Chaoqun Huang
Shangzhi Shu
Miaomiao Zhou
Zhenming Sun
Shuyan Li
Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
PLoS ONE
title Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
title_full Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
title_fullStr Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
title_full_unstemmed Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
title_short Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients
title_sort development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non valvular atrial fibrillation patients
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737704/?tool=EBI
work_keys_str_mv AT chaoqunhuang developmentandvalidationofaninterpretablemachinelearningmodelforpredictingleftatrialthrombusorspontaneousechocontrastinnonvalvularatrialfibrillationpatients
AT shangzhishu developmentandvalidationofaninterpretablemachinelearningmodelforpredictingleftatrialthrombusorspontaneousechocontrastinnonvalvularatrialfibrillationpatients
AT miaomiaozhou developmentandvalidationofaninterpretablemachinelearningmodelforpredictingleftatrialthrombusorspontaneousechocontrastinnonvalvularatrialfibrillationpatients
AT zhenmingsun developmentandvalidationofaninterpretablemachinelearningmodelforpredictingleftatrialthrombusorspontaneousechocontrastinnonvalvularatrialfibrillationpatients
AT shuyanli developmentandvalidationofaninterpretablemachinelearningmodelforpredictingleftatrialthrombusorspontaneousechocontrastinnonvalvularatrialfibrillationpatients