Unsupervised identification of crystal defects from atomistic potential descriptors

Abstract Identifying crystal defects is vital for unraveling the origins of many physical phenomena. Traditionally used order parameters are system-dependent and can be computationally expensive to calculate for long molecular dynamics simulations. Unsupervised algorithms offer an alternative indepe...

Full description

Saved in:
Bibliographic Details
Main Authors: Lukáš Kývala, Pablo Montero de Hijes, Christoph Dellago
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01544-2
Tags: Add Tag
No Tags, Be the first to tag this record!