Unsupervised identification of crystal defects from atomistic potential descriptors
Abstract Identifying crystal defects is vital for unraveling the origins of many physical phenomena. Traditionally used order parameters are system-dependent and can be computationally expensive to calculate for long molecular dynamics simulations. Unsupervised algorithms offer an alternative indepe...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01544-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!