Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model

This study examines the bias in weighted least absolute deviation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><...

Full description

Saved in:
Bibliographic Details
Main Authors: Tamer Elbayoumi, Sayed Mostafa
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Stats
Subjects:
Online Access:https://www.mdpi.com/2571-905X/7/4/76
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850238599608401920
author Tamer Elbayoumi
Sayed Mostafa
author_facet Tamer Elbayoumi
Sayed Mostafa
author_sort Tamer Elbayoumi
collection DOAJ
description This study examines the bias in weighted least absolute deviation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) estimation within the context of stationary first-order bifurcating autoregressive (BAR(1)) models, which are frequently employed to analyze binary tree-like data, including applications in cell lineage studies. Initial findings indicate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimators can demonstrate substantial and problematic biases, especially when small to moderate sample sizes. The autoregressive parameter and the correlation between model errors influence the volume and direction of the bias. To address this issue, we propose two bootstrap-based bias-corrected estimators for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimator. We conduct extensive simulations to assess the performance of these bias-corrected estimators. Our empirical findings demonstrate that these estimators effectively reduce the bias inherent in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimators, with their performance being particularly pronounced at the extremes of the autoregressive parameter range.
format Article
id doaj-art-c0c6d40353fa4759be242d2d5e333acf
institution OA Journals
issn 2571-905X
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Stats
spelling doaj-art-c0c6d40353fa4759be242d2d5e333acf2025-08-20T02:01:24ZengMDPI AGStats2571-905X2024-10-01741315133210.3390/stats7040076Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive ModelTamer Elbayoumi0Sayed Mostafa1Department of Mathematics and Statistics, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USADepartment of Mathematics and Statistics, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USAThis study examines the bias in weighted least absolute deviation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) estimation within the context of stationary first-order bifurcating autoregressive (BAR(1)) models, which are frequently employed to analyze binary tree-like data, including applications in cell lineage studies. Initial findings indicate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimators can demonstrate substantial and problematic biases, especially when small to moderate sample sizes. The autoregressive parameter and the correlation between model errors influence the volume and direction of the bias. To address this issue, we propose two bootstrap-based bias-corrected estimators for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimator. We conduct extensive simulations to assess the performance of these bias-corrected estimators. Our empirical findings demonstrate that these estimators effectively reduce the bias inherent in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><msub><mi>L</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> estimators, with their performance being particularly pronounced at the extremes of the autoregressive parameter range.https://www.mdpi.com/2571-905X/7/4/76bifurcatingautoregressivesinge bootstrapfast double bootstrap
spellingShingle Tamer Elbayoumi
Sayed Mostafa
Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
Stats
bifurcating
autoregressive
singe bootstrap
fast double bootstrap
title Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
title_full Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
title_fullStr Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
title_full_unstemmed Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
title_short Bias Analysis and Correction in Weighted-<i>L</i><sub>1</sub> Estimators for the First-Order Bifurcating Autoregressive Model
title_sort bias analysis and correction in weighted i l i sub 1 sub estimators for the first order bifurcating autoregressive model
topic bifurcating
autoregressive
singe bootstrap
fast double bootstrap
url https://www.mdpi.com/2571-905X/7/4/76
work_keys_str_mv AT tamerelbayoumi biasanalysisandcorrectioninweightedilisub1subestimatorsforthefirstorderbifurcatingautoregressivemodel
AT sayedmostafa biasanalysisandcorrectioninweightedilisub1subestimatorsforthefirstorderbifurcatingautoregressivemodel