In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films

Surface roughness significantly affects the performance of microelectromechanical systems (MEMS) and piezoelectric films. This study investigates the impact of surface roughness on the mechanical properties of thin piezoelectric films using nanoindentation and scanning probe microscopy (SPM). Four p...

Full description

Saved in:
Bibliographic Details
Main Authors: Maxence Bigerelle, Julie Lemesle, Alex Montagne, Denis Remiens
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/24/11849
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846106015780569088
author Maxence Bigerelle
Julie Lemesle
Alex Montagne
Denis Remiens
author_facet Maxence Bigerelle
Julie Lemesle
Alex Montagne
Denis Remiens
author_sort Maxence Bigerelle
collection DOAJ
description Surface roughness significantly affects the performance of microelectromechanical systems (MEMS) and piezoelectric films. This study investigates the impact of surface roughness on the mechanical properties of thin piezoelectric films using nanoindentation and scanning probe microscopy (SPM). Four piezoelectric films with different thicknesses (220, 350, and 450 nm) and substrate configurations (LNO/SiO<sub>2</sub>/Si or LNO/Si) were analyzed. A discriminant analysis revealed that the fractal dimension is more effective than the arithmetic mean height (Sa) for distinguishing surfaces, with only 2% misclassification versus 25% for Sa. A multiscale analysis identified the Smr2 parameter with low-pass filtering at 140 nm as highly effective for surface discrimination, achieving only 0.1% misclassification. The analysis of the roughness parameter Sa at various scales showed that band-pass filtering at 500 nm yielded a 0.7% misclassification rate, indicating its relevance for fractal roughness characterization. Most relevant roughness parameters for mechanical property correlation were found: Smr2 with low-pass filtering at 500 nm correlated best with hardness (R<sup>2</sup> = 0.82), and Vvc with low-pass filtering at 2 nm correlated best with reduced elastic modulus (R<sup>2</sup> = 0.84). These results demonstrate that surface roughness features like valley volume and voids significantly impact the apparent mechanical properties of piezoelectric films.
format Article
id doaj-art-c0b82ad5eaf74611bcd6925453ac7920
institution Kabale University
issn 2076-3417
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-c0b82ad5eaf74611bcd6925453ac79202024-12-27T14:08:33ZengMDPI AGApplied Sciences2076-34172024-12-0114241184910.3390/app142411849In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin FilmsMaxence Bigerelle0Julie Lemesle1Alex Montagne2Denis Remiens3CNRS UMR 8201–LAMIH—Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, University Polytechnique Hauts-de-France, 59313 Valenciennes, FranceValutec, University Polytechnique Hauts-de-France, 59314 Valenciennes, FranceCNRS UMR 8201–LAMIH—Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, University Polytechnique Hauts-de-France, 59313 Valenciennes, FranceCNRS UMR 8520–IEMN—Institut d′Electronique, de Microélectronique et de Nanotechnologie, University Polytechnique Hauts-de-France, 59309 Valenciennes, FranceSurface roughness significantly affects the performance of microelectromechanical systems (MEMS) and piezoelectric films. This study investigates the impact of surface roughness on the mechanical properties of thin piezoelectric films using nanoindentation and scanning probe microscopy (SPM). Four piezoelectric films with different thicknesses (220, 350, and 450 nm) and substrate configurations (LNO/SiO<sub>2</sub>/Si or LNO/Si) were analyzed. A discriminant analysis revealed that the fractal dimension is more effective than the arithmetic mean height (Sa) for distinguishing surfaces, with only 2% misclassification versus 25% for Sa. A multiscale analysis identified the Smr2 parameter with low-pass filtering at 140 nm as highly effective for surface discrimination, achieving only 0.1% misclassification. The analysis of the roughness parameter Sa at various scales showed that band-pass filtering at 500 nm yielded a 0.7% misclassification rate, indicating its relevance for fractal roughness characterization. Most relevant roughness parameters for mechanical property correlation were found: Smr2 with low-pass filtering at 500 nm correlated best with hardness (R<sup>2</sup> = 0.82), and Vvc with low-pass filtering at 2 nm correlated best with reduced elastic modulus (R<sup>2</sup> = 0.84). These results demonstrate that surface roughness features like valley volume and voids significantly impact the apparent mechanical properties of piezoelectric films.https://www.mdpi.com/2076-3417/14/24/11849nanoindentationtopographypiezoelectric
spellingShingle Maxence Bigerelle
Julie Lemesle
Alex Montagne
Denis Remiens
In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
Applied Sciences
nanoindentation
topography
piezoelectric
title In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
title_full In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
title_fullStr In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
title_full_unstemmed In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
title_short In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
title_sort in situ nanoindentation surface topography of lead free piezoelectric thin films
topic nanoindentation
topography
piezoelectric
url https://www.mdpi.com/2076-3417/14/24/11849
work_keys_str_mv AT maxencebigerelle insitunanoindentationsurfacetopographyofleadfreepiezoelectricthinfilms
AT julielemesle insitunanoindentationsurfacetopographyofleadfreepiezoelectricthinfilms
AT alexmontagne insitunanoindentationsurfacetopographyofleadfreepiezoelectricthinfilms
AT denisremiens insitunanoindentationsurfacetopographyofleadfreepiezoelectricthinfilms