Paranormed Motzkin sequence spaces
In this article, it is obtained two new paranormed sequence spaces $c_0(\mathcal{M}, \mathfrak{p})$ and $c(\mathcal{M},\mathfrak{p})$ by the aid of the conservative Motzkin matrix operator $\mathcal{M}$ and is examined some topological properties of these spaces. In the continuation of the study, Sc...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Dera Natung Government College
2024-12-01
|
| Series: | Dera Natung Government College Research Journal |
| Subjects: | |
| Online Access: | https://dngc.ac.in/journals/index.php/dngcrj/article/view/182 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849471552789151744 |
|---|---|
| author | Sezer Erdem Serkan Demiriz Hacer Bilgin Ellidokuzoğlu |
| author_facet | Sezer Erdem Serkan Demiriz Hacer Bilgin Ellidokuzoğlu |
| author_sort | Sezer Erdem |
| collection | DOAJ |
| description | In this article, it is obtained two new paranormed sequence spaces $c_0(\mathcal{M}, \mathfrak{p})$ and $c(\mathcal{M},\mathfrak{p})$ by the aid of the conservative Motzkin matrix operator $\mathcal{M}$ and is examined some topological properties of these spaces. In the continuation of the study, Schauder basis and the $\alpha$-, $\beta$- and $\gamma$-duals are determined. Finally, some new matrix mappings are characterized related new paranormed sequence spaces. |
| format | Article |
| id | doaj-art-c0b50e32dce547f484bbad3d336b2182 |
| institution | Kabale University |
| issn | 2456-8228 2583-5483 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | Dera Natung Government College |
| record_format | Article |
| series | Dera Natung Government College Research Journal |
| spelling | doaj-art-c0b50e32dce547f484bbad3d336b21822025-08-20T03:24:47ZengDera Natung Government CollegeDera Natung Government College Research Journal2456-82282583-54832024-12-0191365110.56405/dngcrj.2024.09.01.04182Paranormed Motzkin sequence spacesSezer Erdem0https://orcid.org/0000-0001-9420-8264Serkan Demiriz1https://orcid.org/0000-0002-4662-6020Hacer Bilgin Ellidokuzoğlu2https://orcid.org/0000-0003-1658-201XFaculty of Engineering and Natural Sciences, Department of Basic Engineering Sciences, Malatya Turgut Özal University, Malatya, TurkeyFaculty of Science and Letters, Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, TurkeyFaculty of Arts and Sciences, Department of Mathematics, Recep Tayyip Erdoğan University, Rize, TurkeyIn this article, it is obtained two new paranormed sequence spaces $c_0(\mathcal{M}, \mathfrak{p})$ and $c(\mathcal{M},\mathfrak{p})$ by the aid of the conservative Motzkin matrix operator $\mathcal{M}$ and is examined some topological properties of these spaces. In the continuation of the study, Schauder basis and the $\alpha$-, $\beta$- and $\gamma$-duals are determined. Finally, some new matrix mappings are characterized related new paranormed sequence spaces.https://dngc.ac.in/journals/index.php/dngcrj/article/view/182motzkin numbersparanormed sequence spacesdualsmatrix mappings |
| spellingShingle | Sezer Erdem Serkan Demiriz Hacer Bilgin Ellidokuzoğlu Paranormed Motzkin sequence spaces Dera Natung Government College Research Journal motzkin numbers paranormed sequence spaces duals matrix mappings |
| title | Paranormed Motzkin sequence spaces |
| title_full | Paranormed Motzkin sequence spaces |
| title_fullStr | Paranormed Motzkin sequence spaces |
| title_full_unstemmed | Paranormed Motzkin sequence spaces |
| title_short | Paranormed Motzkin sequence spaces |
| title_sort | paranormed motzkin sequence spaces |
| topic | motzkin numbers paranormed sequence spaces duals matrix mappings |
| url | https://dngc.ac.in/journals/index.php/dngcrj/article/view/182 |
| work_keys_str_mv | AT sezererdem paranormedmotzkinsequencespaces AT serkandemiriz paranormedmotzkinsequencespaces AT hacerbilginellidokuzoglu paranormedmotzkinsequencespaces |