Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields
Abstract This work provides a proof of concept for the computation of pure gluonic amplitudes in quantum chromodynamics (QCD) on graphics processing units (GPUs). The implementation relies on the Berends–Giele recursion algorithm and, for the first time on a GPU, enables the numerical computation of...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-05-01
|
| Series: | European Physical Journal C: Particles and Fields |
| Online Access: | https://doi.org/10.1140/epjc/s10052-025-14318-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849688329044361216 |
|---|---|
| author | Juan Cruz-Martinez Giuseppe De Laurentis Mathieu Pellen |
| author_facet | Juan Cruz-Martinez Giuseppe De Laurentis Mathieu Pellen |
| author_sort | Juan Cruz-Martinez |
| collection | DOAJ |
| description | Abstract This work provides a proof of concept for the computation of pure gluonic amplitudes in quantum chromodynamics (QCD) on graphics processing units (GPUs). The implementation relies on the Berends–Giele recursion algorithm and, for the first time on a GPU, enables the numerical computation of amplitudes in an arbitrary number of space-time dimensions and over finite fields. This demonstrates the advantages of hardware acceleration, not only for the computation of tree-level amplitudes for real-radiation processes in four dimensions over complex numbers but also for generating loop integrands for virtual corrections in d dimensions over finite fields. The associated computer program is publicly available. |
| format | Article |
| id | doaj-art-c08d2ba881d64edeb42514ed9dc95d3f |
| institution | DOAJ |
| issn | 1434-6052 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | SpringerOpen |
| record_format | Article |
| series | European Physical Journal C: Particles and Fields |
| spelling | doaj-art-c08d2ba881d64edeb42514ed9dc95d3f2025-08-20T03:22:03ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-05-0185511110.1140/epjc/s10052-025-14318-3Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fieldsJuan Cruz-Martinez0Giuseppe De Laurentis1Mathieu Pellen2Theoretical Physics Department, CERNHiggs Centre for Theoretical Physics, University of EdinburghPhysikalisches Institut, Universität FreiburgAbstract This work provides a proof of concept for the computation of pure gluonic amplitudes in quantum chromodynamics (QCD) on graphics processing units (GPUs). The implementation relies on the Berends–Giele recursion algorithm and, for the first time on a GPU, enables the numerical computation of amplitudes in an arbitrary number of space-time dimensions and over finite fields. This demonstrates the advantages of hardware acceleration, not only for the computation of tree-level amplitudes for real-radiation processes in four dimensions over complex numbers but also for generating loop integrands for virtual corrections in d dimensions over finite fields. The associated computer program is publicly available.https://doi.org/10.1140/epjc/s10052-025-14318-3 |
| spellingShingle | Juan Cruz-Martinez Giuseppe De Laurentis Mathieu Pellen Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields European Physical Journal C: Particles and Fields |
| title | Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields |
| title_full | Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields |
| title_fullStr | Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields |
| title_full_unstemmed | Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields |
| title_short | Accelerating Berends–Giele recursion for gluons in arbitrary dimensions over finite fields |
| title_sort | accelerating berends giele recursion for gluons in arbitrary dimensions over finite fields |
| url | https://doi.org/10.1140/epjc/s10052-025-14318-3 |
| work_keys_str_mv | AT juancruzmartinez acceleratingberendsgielerecursionforgluonsinarbitrarydimensionsoverfinitefields AT giuseppedelaurentis acceleratingberendsgielerecursionforgluonsinarbitrarydimensionsoverfinitefields AT mathieupellen acceleratingberendsgielerecursionforgluonsinarbitrarydimensionsoverfinitefields |