Progress in Adsorptive Removal of Volatile Organic Compounds by Zeolites

Abstract Volatile Organic Compounds (VOCs) are a class of pollutants that have recently received much attention in atmospheric and indoor air pollution problems. They are precursors for PM2.5 and ozone generation. The removal of VOCs emitted from exhaust gases is an urgent problem to solve air pollu...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiong Yang, Haotu Zhong, Wengui Zhang, Yingshu Liu, Ningqi Sun, Ruixing Kuang, Cong Wang, Antao Zhan, Junrong Zhang, Qiming Tang, Ziyi Li
Format: Article
Language:English
Published: Springer 2023-03-01
Series:Aerosol and Air Quality Research
Subjects:
Online Access:https://doi.org/10.4209/aaqr.220442
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Volatile Organic Compounds (VOCs) are a class of pollutants that have recently received much attention in atmospheric and indoor air pollution problems. They are precursors for PM2.5 and ozone generation. The removal of VOCs emitted from exhaust gases is an urgent problem to solve air pollution. Adsorption is one of the most promising VOC abatement technologies, with the advantages of high purification efficiency, low cost, and simple equipment. The adsorbent plays a critical role in VOCs removal efficiency. Zeolite is a rapidly developing material due to its highly ordered and flexible microporous structure, good stability, and abundant surface modification. In this paper, the influence of zeolite properties, including framework structure, pore properties, and surface cations, on VOCs adsorption performance is analyzed. The VOCs adsorption performance on different zeolite adsorbents in the presence of water vapor is compared. The influential factors on the mass transfer kinetic properties of VOCs adsorption are summarized. Finally, an overview of zeolite honeycomb adsorbent applications for industrial use is presented, including multi-tower fixed bed adsorption and zeolite rotor adsorption.
ISSN:1680-8584
2071-1409