Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex

The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron mi...

Full description

Saved in:
Bibliographic Details
Main Authors: Sergio Plaza-Alonso, Nicolas Cano-Astorga, Javier DeFelipe, Lidia Alonso-Nanclares
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2025-01-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/96144
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850077545171517440
author Sergio Plaza-Alonso
Nicolas Cano-Astorga
Javier DeFelipe
Lidia Alonso-Nanclares
author_facet Sergio Plaza-Alonso
Nicolas Cano-Astorga
Javier DeFelipe
Lidia Alonso-Nanclares
author_sort Sergio Plaza-Alonso
collection DOAJ
description The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.
format Article
id doaj-art-c05bcd7c35fe4f08ae9b77dd488470c6
institution DOAJ
issn 2050-084X
language English
publishDate 2025-01-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj-art-c05bcd7c35fe4f08ae9b77dd488470c62025-08-20T02:45:46ZengeLife Sciences Publications LtdeLife2050-084X2025-01-011410.7554/eLife.96144Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortexSergio Plaza-Alonso0https://orcid.org/0000-0002-2484-5791Nicolas Cano-Astorga1https://orcid.org/0000-0003-3724-0481Javier DeFelipe2https://orcid.org/0000-0001-5484-0660Lidia Alonso-Nanclares3https://orcid.org/0000-0003-2649-7097Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, SpainLaboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, SpainLaboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, SpainLaboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, SpainThe entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.https://elifesciences.org/articles/96144brainsynapseultrastructureautopsyhuman
spellingShingle Sergio Plaza-Alonso
Nicolas Cano-Astorga
Javier DeFelipe
Lidia Alonso-Nanclares
Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
eLife
brain
synapse
ultrastructure
autopsy
human
title Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
title_full Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
title_fullStr Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
title_full_unstemmed Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
title_short Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
title_sort volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex
topic brain
synapse
ultrastructure
autopsy
human
url https://elifesciences.org/articles/96144
work_keys_str_mv AT sergioplazaalonso volumeelectronmicroscopyrevealsuniquelaminarsynapticcharacteristicsinthehumanentorhinalcortex
AT nicolascanoastorga volumeelectronmicroscopyrevealsuniquelaminarsynapticcharacteristicsinthehumanentorhinalcortex
AT javierdefelipe volumeelectronmicroscopyrevealsuniquelaminarsynapticcharacteristicsinthehumanentorhinalcortex
AT lidiaalonsonanclares volumeelectronmicroscopyrevealsuniquelaminarsynapticcharacteristicsinthehumanentorhinalcortex