Inorganic-bacterial biohybrids for efficient solar-driven nitrogen fixation
Abstract The integration of microbial nitrogen (N2) fixation with photochemical processes using inorganic light-absorbing nanomaterials is a burgeoning field in sustainable energy production. Here, we explore the synergistic combination of inorganic semiconductor nanowires (NWs) with whole-cell micr...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60937-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The integration of microbial nitrogen (N2) fixation with photochemical processes using inorganic light-absorbing nanomaterials is a burgeoning field in sustainable energy production. Here, we explore the synergistic combination of inorganic semiconductor nanowires (NWs) with whole-cell microorganisms to create an inorganic-bacterial biohybrid system. Specifically, we employ Cu2O@TiO2 NWs with a core/shell structure to harness sunlight and generate photoexcited electrons. Azotobacter vinelandii, serving as a biocatalyst, adsorbs onto these NWs and facilitates the reception of photoexcited electrons, thereby enhancing the efficiency of the photoelectrochemical N2 fixation reaction (PEC-NRR). The biohybrid system achieves an impressive ammonia (NH3) yield of (1.49 ± 0.05) × 10-9 mol s-1 cm-2 (5.36 ± 0.18 μmol h-1 cm-2). The enhancement in NH3 synthesis within the Cu2O@TiO2 NWs/A. vinelandii biohybrid is attributed to the increased concentrations of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5’-triphosphate (ATP), as well as the overexpression of N2-fixing genes like nifH and nifD within the nitrogenase enzyme complex. This study underscores the potential of inorganic-bacterial biohybrid systems in solar-chemical conversion, paving the way for more diverse and functional approaches to harnessing solar energy for sustainable chemical production. |
|---|---|
| ISSN: | 2041-1723 |