Data Allocation in Distributed Database based on CSO
Distributed databases (DDBs) provide smart processing of large databases, the problems of fragmentation and allocation are vital design problems in addition to the centralized design. The majority of performance degradation in DDBs is due to the communication cost by query remote access and retriev...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Tikrit University
2022-11-01
|
| Series: | Tikrit Journal of Pure Science |
| Subjects: | |
| Online Access: | https://tjpsj.org/index.php/tjps/article/view/66 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849704191699714048 |
|---|---|
| author | Saadi Hamad Thalij |
| author_facet | Saadi Hamad Thalij |
| author_sort | Saadi Hamad Thalij |
| collection | DOAJ |
| description |
Distributed databases (DDBs) provide smart processing of large databases, the problems of fragmentation and allocation are vital design problems in addition to the centralized design. The majority of performance degradation in DDBs is due to the communication cost by query remote access and retrieval of data. This can be optimized through an efficient data allocation approach that will provide flexible retrieval of a query by low cost accessible sites. In this paper, a novel high performance data allocation approach is designed using Chicken Swarm Optimization (CSO) algorithm. Data allocation problem (DAP) is a NP-Hard problem modelled as optimization problem. The proposed data allocation approach initially characterizes the DAP into optimal problem of choosing the appropriate and minimal communication cost provoking sites for the data fragments. Then the CSO algorithm optimally chooses the sites for each of the data fragments without creating much overhead and data route diversions. This enhances the overall distributed database design and subsequently ensures quality replication. The experimental results illustrate that the proposed CSO based intelligent data fragment allocation approach has better performance than most existing approaches and thus signifies the impact of efficient data allocation in DDBs.
|
| format | Article |
| id | doaj-art-c02a7bec61234319a2541a2bfdc8f4e8 |
| institution | DOAJ |
| issn | 1813-1662 2415-1726 |
| language | English |
| publishDate | 2022-11-01 |
| publisher | Tikrit University |
| record_format | Article |
| series | Tikrit Journal of Pure Science |
| spelling | doaj-art-c02a7bec61234319a2541a2bfdc8f4e82025-08-20T03:16:51ZengTikrit UniversityTikrit Journal of Pure Science1813-16622415-17262022-11-0127210.25130/tjps.v27i2.66Data Allocation in Distributed Database based on CSOSaadi Hamad Thalij Distributed databases (DDBs) provide smart processing of large databases, the problems of fragmentation and allocation are vital design problems in addition to the centralized design. The majority of performance degradation in DDBs is due to the communication cost by query remote access and retrieval of data. This can be optimized through an efficient data allocation approach that will provide flexible retrieval of a query by low cost accessible sites. In this paper, a novel high performance data allocation approach is designed using Chicken Swarm Optimization (CSO) algorithm. Data allocation problem (DAP) is a NP-Hard problem modelled as optimization problem. The proposed data allocation approach initially characterizes the DAP into optimal problem of choosing the appropriate and minimal communication cost provoking sites for the data fragments. Then the CSO algorithm optimally chooses the sites for each of the data fragments without creating much overhead and data route diversions. This enhances the overall distributed database design and subsequently ensures quality replication. The experimental results illustrate that the proposed CSO based intelligent data fragment allocation approach has better performance than most existing approaches and thus signifies the impact of efficient data allocation in DDBs. https://tjpsj.org/index.php/tjps/article/view/66Distributed database systemsallocationcommunication costdata allocation problemquadratic assignment problemchicken swarm optimization |
| spellingShingle | Saadi Hamad Thalij Data Allocation in Distributed Database based on CSO Tikrit Journal of Pure Science Distributed database systems allocation communication cost data allocation problem quadratic assignment problem chicken swarm optimization |
| title | Data Allocation in Distributed Database based on CSO |
| title_full | Data Allocation in Distributed Database based on CSO |
| title_fullStr | Data Allocation in Distributed Database based on CSO |
| title_full_unstemmed | Data Allocation in Distributed Database based on CSO |
| title_short | Data Allocation in Distributed Database based on CSO |
| title_sort | data allocation in distributed database based on cso |
| topic | Distributed database systems allocation communication cost data allocation problem quadratic assignment problem chicken swarm optimization |
| url | https://tjpsj.org/index.php/tjps/article/view/66 |
| work_keys_str_mv | AT saadihamadthalij dataallocationindistributeddatabasebasedoncso |