Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory

Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun Yin, Wenting Jiao, Lin Wang, Shiqiang Zhu
Format: Article
Language:English
Published: MDPI AG 2024-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/15/9/1084
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850260205944700928
author Kun Yin
Wenting Jiao
Lin Wang
Shiqiang Zhu
author_facet Kun Yin
Wenting Jiao
Lin Wang
Shiqiang Zhu
author_sort Kun Yin
collection DOAJ
description Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling, particularly for high-order modes. In this work, based on the principles of phase control theory, we have devised an approach to mitigate the dispersion challenges, focusing on a thin-film lithium niobate-on-onsulator (LNOI) platform. This solution involves integrating a customized inverse-dispersion section into the device architecture, offsetting minor phase shifts encountered during the mode coupling process. By employing this approach, we have achieved broadband mode conversion from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> within a 300 nm wavelength range, and the maximum deviations were maintained below −0.68 dB and −0.78 dB, respectively. Furthermore, the device exhibited remarkably low crosstalk, reaching down to −26 dB.
format Article
id doaj-art-c02585e06eac4c6c80dc3e7f90f660a0
institution OA Journals
issn 2072-666X
language English
publishDate 2024-08-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj-art-c02585e06eac4c6c80dc3e7f90f660a02025-08-20T01:55:41ZengMDPI AGMicromachines2072-666X2024-08-01159108410.3390/mi15091084Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control TheoryKun Yin0Wenting Jiao1Lin Wang2Shiqiang Zhu3School of Mechanical Engineering, Zhejiang University, Hangzhou 310007, ChinaZhejiang Lab, Hangzhou 311112, ChinaZhejiang Lab, Hangzhou 311112, ChinaSchool of Mechanical Engineering, Zhejiang University, Hangzhou 310007, ChinaMode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling, particularly for high-order modes. In this work, based on the principles of phase control theory, we have devised an approach to mitigate the dispersion challenges, focusing on a thin-film lithium niobate-on-onsulator (LNOI) platform. This solution involves integrating a customized inverse-dispersion section into the device architecture, offsetting minor phase shifts encountered during the mode coupling process. By employing this approach, we have achieved broadband mode conversion from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> within a 300 nm wavelength range, and the maximum deviations were maintained below −0.68 dB and −0.78 dB, respectively. Furthermore, the device exhibited remarkably low crosstalk, reaching down to −26 dB.https://www.mdpi.com/2072-666X/15/9/1084thin-film lithium niobatemode (de)multiplexeroptical phase control
spellingShingle Kun Yin
Wenting Jiao
Lin Wang
Shiqiang Zhu
Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
Micromachines
thin-film lithium niobate
mode (de)multiplexer
optical phase control
title Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
title_full Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
title_fullStr Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
title_full_unstemmed Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
title_short Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory
title_sort ultra broadband mode de multiplexer on thin film lithium niobate platform adopting phase control theory
topic thin-film lithium niobate
mode (de)multiplexer
optical phase control
url https://www.mdpi.com/2072-666X/15/9/1084
work_keys_str_mv AT kunyin ultrabroadbandmodedemultiplexeronthinfilmlithiumniobateplatformadoptingphasecontroltheory
AT wentingjiao ultrabroadbandmodedemultiplexeronthinfilmlithiumniobateplatformadoptingphasecontroltheory
AT linwang ultrabroadbandmodedemultiplexeronthinfilmlithiumniobateplatformadoptingphasecontroltheory
AT shiqiangzhu ultrabroadbandmodedemultiplexeronthinfilmlithiumniobateplatformadoptingphasecontroltheory