Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory

Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun Yin, Wenting Jiao, Lin Wang, Shiqiang Zhu
Format: Article
Language:English
Published: MDPI AG 2024-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/15/9/1084
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling, particularly for high-order modes. In this work, based on the principles of phase control theory, we have devised an approach to mitigate the dispersion challenges, focusing on a thin-film lithium niobate-on-onsulator (LNOI) platform. This solution involves integrating a customized inverse-dispersion section into the device architecture, offsetting minor phase shifts encountered during the mode coupling process. By employing this approach, we have achieved broadband mode conversion from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msub><mi>E</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> within a 300 nm wavelength range, and the maximum deviations were maintained below −0.68 dB and −0.78 dB, respectively. Furthermore, the device exhibited remarkably low crosstalk, reaching down to −26 dB.
ISSN:2072-666X