LOMDP: Maximizing Desired Opinions in Social Networks by Considering User Expression Intentions

To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuan Wang, Bin Wu, Tong Wu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/4/360
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users’ expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.
ISSN:1099-4300