Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/13/24/3521 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis. Phylogenetic analysis classified these genes into four distinct subgroups with obvious evolutionary relationships. Further analysis on gene structure, protein motif, and structure indicated that G-proteins within each evolutionary branch exhibited similar exon-intron organization, conserved motif patterns, and structural features. Collinearity analysis showed no significant collinear relationships among those G-protein genes, indicating a unique evolutionary trajectory within barley. Moreover, <i>cis</i>-regulatory elements detected in the upstream sequences of these genes were involved in response to plant hormones and signaling molecules. Expression analyses revealed tissue-specific expression patterns and differential regulation in response to abiotic stresses. The expression patterns of G-protein genes were further validated using a quantitative real-time PCR (qRT-PCR) technique, indicating the reliability of transcriptomic data, as well as special responses to salt, drought, and waterlogging stresses. These findings may provide underlying mechanisms by which G-protein genes participate in salt tolerance of barley, and also highlight candidate genes for potential genetic engineering applications in improving crop resilience to salinity stress. |
|---|---|
| ISSN: | 2223-7747 |