Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability

Abstract Convolutional Neural Networks (CNNs) have proven effective in automated plant disease diagnosis, significantly contributing to crop health monitoring. However, their limited interpretability hinders practical deployment in real-world agricultural settings. To address this, we explore advanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Alfonso González-Briones, Sebastián López Florez, Pablo Chamoso, Luis F. Castillo-Ossa, Emilio S. Corchado
Format: Article
Language:English
Published: Springer 2025-05-01
Series:International Journal of Computational Intelligence Systems
Subjects:
Online Access:https://doi.org/10.1007/s44196-025-00835-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849730851864051712
author Alfonso González-Briones
Sebastián López Florez
Pablo Chamoso
Luis F. Castillo-Ossa
Emilio S. Corchado
author_facet Alfonso González-Briones
Sebastián López Florez
Pablo Chamoso
Luis F. Castillo-Ossa
Emilio S. Corchado
author_sort Alfonso González-Briones
collection DOAJ
description Abstract Convolutional Neural Networks (CNNs) have proven effective in automated plant disease diagnosis, significantly contributing to crop health monitoring. However, their limited interpretability hinders practical deployment in real-world agricultural settings. To address this, we explore advanced CNN architectures, namely ResNet-50 and EfficientNet, augmented with attention mechanisms. These models enhance accuracy by optimizing depth, width, and resolution, while attention layers improve transparency by focusing on disease-relevant regions. Experiments using the PlantVillage dataset show that basic CNNs achieve 46.69% accuracy, while ResNet-50 and EfficientNet attain 63.79% and 98.27%, respectively. On a 39-class extended dataset, our proposed EfficientNet-B0 with attention (EfficientNetB0-Attn), integrating an attention module at layer 262, achieves 99.39% accuracy. This approach significantly enhances interpretability without compromising performance. The attention module generates weights via backpropagation, allowing the model to emphasize disease-relevant image regions, thereby enhancing both accuracy and interpretability.
format Article
id doaj-art-c00c87d8501e46d58bcd5d901f45278c
institution DOAJ
issn 1875-6883
language English
publishDate 2025-05-01
publisher Springer
record_format Article
series International Journal of Computational Intelligence Systems
spelling doaj-art-c00c87d8501e46d58bcd5d901f45278c2025-08-20T03:08:44ZengSpringerInternational Journal of Computational Intelligence Systems1875-68832025-05-0118111510.1007/s44196-025-00835-2Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and InterpretabilityAlfonso González-Briones0Sebastián López Florez1Pablo Chamoso2Luis F. Castillo-Ossa3Emilio S. Corchado4Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de SalamancaGrupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de SalamancaGrupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de SalamancaUniversidad de CaldasGrupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de SalamancaAbstract Convolutional Neural Networks (CNNs) have proven effective in automated plant disease diagnosis, significantly contributing to crop health monitoring. However, their limited interpretability hinders practical deployment in real-world agricultural settings. To address this, we explore advanced CNN architectures, namely ResNet-50 and EfficientNet, augmented with attention mechanisms. These models enhance accuracy by optimizing depth, width, and resolution, while attention layers improve transparency by focusing on disease-relevant regions. Experiments using the PlantVillage dataset show that basic CNNs achieve 46.69% accuracy, while ResNet-50 and EfficientNet attain 63.79% and 98.27%, respectively. On a 39-class extended dataset, our proposed EfficientNet-B0 with attention (EfficientNetB0-Attn), integrating an attention module at layer 262, achieves 99.39% accuracy. This approach significantly enhances interpretability without compromising performance. The attention module generates weights via backpropagation, allowing the model to emphasize disease-relevant image regions, thereby enhancing both accuracy and interpretability.https://doi.org/10.1007/s44196-025-00835-2Convolutional neural network (CNN )EfficientNetResNet-50EXplainable artificial intelligence (XAI)
spellingShingle Alfonso González-Briones
Sebastián López Florez
Pablo Chamoso
Luis F. Castillo-Ossa
Emilio S. Corchado
Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
International Journal of Computational Intelligence Systems
Convolutional neural network (CNN )
EfficientNet
ResNet-50
EXplainable artificial intelligence (XAI)
title Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
title_full Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
title_fullStr Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
title_full_unstemmed Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
title_short Enhancing Plant Disease Detection: Incorporating Advanced CNN Architectures for Better Accuracy and Interpretability
title_sort enhancing plant disease detection incorporating advanced cnn architectures for better accuracy and interpretability
topic Convolutional neural network (CNN )
EfficientNet
ResNet-50
EXplainable artificial intelligence (XAI)
url https://doi.org/10.1007/s44196-025-00835-2
work_keys_str_mv AT alfonsogonzalezbriones enhancingplantdiseasedetectionincorporatingadvancedcnnarchitecturesforbetteraccuracyandinterpretability
AT sebastianlopezflorez enhancingplantdiseasedetectionincorporatingadvancedcnnarchitecturesforbetteraccuracyandinterpretability
AT pablochamoso enhancingplantdiseasedetectionincorporatingadvancedcnnarchitecturesforbetteraccuracyandinterpretability
AT luisfcastilloossa enhancingplantdiseasedetectionincorporatingadvancedcnnarchitecturesforbetteraccuracyandinterpretability
AT emilioscorchado enhancingplantdiseasedetectionincorporatingadvancedcnnarchitecturesforbetteraccuracyandinterpretability