An Analysis of Powder, Hard-Packed, and Wet Snow in High Mountain Areas Based on SAR, Optical Data, and In Situ Data

The following study presents the results obtained from a comparative analysis of dry (powder and hard snow) and wet snow based on satellite data and in situ data methods for monitoring in the high mountain belt of Bulgaria. The aim of the study is to analyze the effectiveness of different spectral i...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrey Stoyanov, Temenuzhka Spasova, Daniela Avetisyan
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/9/1649
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The following study presents the results obtained from a comparative analysis of dry (powder and hard snow) and wet snow based on satellite data and in situ data methods for monitoring in the high mountain belt of Bulgaria. The aim of the study is to analyze the effectiveness of different spectral indices based on satellite data from Synthetic Aperture Radar (SAR), high-resolution (HR) imagery, and spectrometer data for assessing the state and dynamics of the snow cover. The methods studied and the results obtained were validated by instrument-based field observations, with instruments using thermal imaging cameras, spectrometer measurements, ground control points, and HR imagery. Satellite data offer an ever-widening view of trends in snow distribution over time. All these data combined provide a detailed picture of surface temperature and snow properties, which are crucial for understanding snowmelt processes and the energy balance in the high-altitude belt. The findings suggest that a multi-method approach, utilizing the combined advantages of SAR satellite data, offers the most comprehensive and accurate framework for satellite-based snow cover monitoring in the high mountain regions of Bulgaria, such as Rila Mountain. This integrative strategy not only improves the precision of snow cover estimates but can also support many water resource-related studies, such as snowmelt runoff studies, snow avalanche modeling, and better-informed decisions in the management and maintenance of winter tourism resorts.
ISSN:2072-4292