A note on free divergence-free vector fields

We exhibit an orthonormal basis of cyclic gradients and a (non-orthogonal) basis of the homogeneous free divergence-free vector field on the full Fock space and determine the dimension of Voiculescu’s free divergence-free vector field of degree $k$ or less. Moreover, we also give a concrete formula...

Full description

Saved in:
Bibliographic Details
Main Authors: Ito, Hyuga, Miyagawa, Akihiro
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.631/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206182803931136
author Ito, Hyuga
Miyagawa, Akihiro
author_facet Ito, Hyuga
Miyagawa, Akihiro
author_sort Ito, Hyuga
collection DOAJ
description We exhibit an orthonormal basis of cyclic gradients and a (non-orthogonal) basis of the homogeneous free divergence-free vector field on the full Fock space and determine the dimension of Voiculescu’s free divergence-free vector field of degree $k$ or less. Moreover, we also give a concrete formula for the orthogonal projection onto the space of cyclic gradients as well as the free Leray projection.
format Article
id doaj-art-bfb3a55353294325b651e9745f3401d5
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-bfb3a55353294325b651e9745f3401d52025-02-07T11:26:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G121545155410.5802/crmath.63110.5802/crmath.631A note on free divergence-free vector fieldsIto, Hyuga0https://orcid.org/0009-0008-6388-804XMiyagawa, Akihiro1https://orcid.org/0000-0002-2525-5283Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, JapanDepartment of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502, Japan; Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USAWe exhibit an orthonormal basis of cyclic gradients and a (non-orthogonal) basis of the homogeneous free divergence-free vector field on the full Fock space and determine the dimension of Voiculescu’s free divergence-free vector field of degree $k$ or less. Moreover, we also give a concrete formula for the orthogonal projection onto the space of cyclic gradients as well as the free Leray projection.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.631/Free probabilityFree semi-circular systemFree divergence-free vector fieldsCyclic gradients
spellingShingle Ito, Hyuga
Miyagawa, Akihiro
A note on free divergence-free vector fields
Comptes Rendus. Mathématique
Free probability
Free semi-circular system
Free divergence-free vector fields
Cyclic gradients
title A note on free divergence-free vector fields
title_full A note on free divergence-free vector fields
title_fullStr A note on free divergence-free vector fields
title_full_unstemmed A note on free divergence-free vector fields
title_short A note on free divergence-free vector fields
title_sort note on free divergence free vector fields
topic Free probability
Free semi-circular system
Free divergence-free vector fields
Cyclic gradients
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.631/
work_keys_str_mv AT itohyuga anoteonfreedivergencefreevectorfields
AT miyagawaakihiro anoteonfreedivergencefreevectorfields
AT itohyuga noteonfreedivergencefreevectorfields
AT miyagawaakihiro noteonfreedivergencefreevectorfields