Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
We numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum pr...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-02-01
|
Series: | Frontiers in Quantum Science and Technology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832548217886081024 |
---|---|
author | E. Dionis B. Peaudecerf S. Guérin D. Guéry-Odelin D. Sugny |
author_facet | E. Dionis B. Peaudecerf S. Guérin D. Guéry-Odelin D. Sugny |
author_sort | E. Dionis |
collection | DOAJ |
description | We numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum principle. A wide variety of target states can be achieved with high precision by varying only the laser phases setting the lattice position. We discuss the physical relevance of the different results and the future directions of this work. |
format | Article |
id | doaj-art-bf88d0bffea441c6a2e35fd51c0615fa |
institution | Kabale University |
issn | 2813-2181 |
language | English |
publishDate | 2025-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Quantum Science and Technology |
spelling | doaj-art-bf88d0bffea441c6a2e35fd51c0615fa2025-02-03T06:33:52ZengFrontiers Media S.A.Frontiers in Quantum Science and Technology2813-21812025-02-01410.3389/frqst.2025.15406951540695Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional casesE. Dionis0B. Peaudecerf1S. Guérin2D. Guéry-Odelin3D. Sugny4Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceLaboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Universitd´e Toulouse, CNRS, Toulouse, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceLaboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Universitd´e Toulouse, CNRS, Toulouse, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceWe numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum principle. A wide variety of target states can be achieved with high precision by varying only the laser phases setting the lattice position. We discuss the physical relevance of the different results and the future directions of this work.https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/fulloptimal control theoryBose-Einstein condensatesGross-Pitaevskii equationgrapeFBD-DVRoptical lattices |
spellingShingle | E. Dionis B. Peaudecerf S. Guérin D. Guéry-Odelin D. Sugny Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases Frontiers in Quantum Science and Technology optimal control theory Bose-Einstein condensates Gross-Pitaevskii equation grape FBD-DVR optical lattices |
title | Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases |
title_full | Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases |
title_fullStr | Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases |
title_full_unstemmed | Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases |
title_short | Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases |
title_sort | optimal control of a bose einstein condensate in an opticallattice the non linear and two dimensional cases |
topic | optimal control theory Bose-Einstein condensates Gross-Pitaevskii equation grape FBD-DVR optical lattices |
url | https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/full |
work_keys_str_mv | AT edionis optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases AT bpeaudecerf optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases AT sguerin optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases AT dgueryodelin optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases AT dsugny optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases |