Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases

We numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum pr...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Dionis, B. Peaudecerf, S. Guérin, D. Guéry-Odelin, D. Sugny
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-02-01
Series:Frontiers in Quantum Science and Technology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548217886081024
author E. Dionis
B. Peaudecerf
S. Guérin
D. Guéry-Odelin
D. Sugny
author_facet E. Dionis
B. Peaudecerf
S. Guérin
D. Guéry-Odelin
D. Sugny
author_sort E. Dionis
collection DOAJ
description We numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum principle. A wide variety of target states can be achieved with high precision by varying only the laser phases setting the lattice position. We discuss the physical relevance of the different results and the future directions of this work.
format Article
id doaj-art-bf88d0bffea441c6a2e35fd51c0615fa
institution Kabale University
issn 2813-2181
language English
publishDate 2025-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Quantum Science and Technology
spelling doaj-art-bf88d0bffea441c6a2e35fd51c0615fa2025-02-03T06:33:52ZengFrontiers Media S.A.Frontiers in Quantum Science and Technology2813-21812025-02-01410.3389/frqst.2025.15406951540695Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional casesE. Dionis0B. Peaudecerf1S. Guérin2D. Guéry-Odelin3D. Sugny4Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceLaboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Universitd´e Toulouse, CNRS, Toulouse, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceLaboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Universitd´e Toulouse, CNRS, Toulouse, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR 6303, Université de Bourgogne, Dijon, FranceWe numerically study the optimal control of an atomic Bose-Einstein condensate in an optical lattice. We present two generalizations of the gradient-based algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice. We show how to construct such algorithms from Pontryagin’s maximum principle. A wide variety of target states can be achieved with high precision by varying only the laser phases setting the lattice position. We discuss the physical relevance of the different results and the future directions of this work.https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/fulloptimal control theoryBose-Einstein condensatesGross-Pitaevskii equationgrapeFBD-DVRoptical lattices
spellingShingle E. Dionis
B. Peaudecerf
S. Guérin
D. Guéry-Odelin
D. Sugny
Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
Frontiers in Quantum Science and Technology
optimal control theory
Bose-Einstein condensates
Gross-Pitaevskii equation
grape
FBD-DVR
optical lattices
title Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
title_full Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
title_fullStr Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
title_full_unstemmed Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
title_short Optimal control of a Bose-Einstein condensate in an opticallattice: the non-linear and two-dimensional cases
title_sort optimal control of a bose einstein condensate in an opticallattice the non linear and two dimensional cases
topic optimal control theory
Bose-Einstein condensates
Gross-Pitaevskii equation
grape
FBD-DVR
optical lattices
url https://www.frontiersin.org/articles/10.3389/frqst.2025.1540695/full
work_keys_str_mv AT edionis optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases
AT bpeaudecerf optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases
AT sguerin optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases
AT dgueryodelin optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases
AT dsugny optimalcontrolofaboseeinsteincondensateinanopticallatticethenonlinearandtwodimensionalcases