Numerical Analysis of Friction Reduction of Grouting in Long-Distance Pipe Jacking
During pipe jacking construction, in addition to overcoming the resistance at the front, there is also the need to overcome significant frictional resistance. Grouting technology is commonly used in engineering to reduce the frictional resistance exerted on the pipe’s external surface during the jac...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/4/1782 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | During pipe jacking construction, in addition to overcoming the resistance at the front, there is also the need to overcome significant frictional resistance. Grouting technology is commonly used in engineering to reduce the frictional resistance exerted on the pipe’s external surface during the jacking process. This paper first reviews the commonly used grouting materials and processes, summarizes their mechanisms for friction reduction, and then establishes a numerical analysis model for grouting in pipe jacking, enhancing the common theoretical methods based on simulation results. The study employs different interface reduction coefficients to simulate the different effects of friction reduction by grouting, focuses on the impact of grouting on friction reduction during long pipe jacking, and compares the results with those calculated using common methods. The results show that the frictional resistance around the pipe is the main source of jacking force in long-distance pipe jacking, and the jacking force increases approximately linearly with the interface reduction coefficient. |
|---|---|
| ISSN: | 2076-3417 |