Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands

Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population...

Full description

Saved in:
Bibliographic Details
Main Authors: Kacoutchy Jean Ayikpa, Valère-Carin Jofack Sokeng, Abou Bakary Ballo, Pierre Gouton, Koffi Fernand Kouamé
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Signals
Subjects:
Online Access:https://www.mdpi.com/2624-6120/6/1/12
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849340021094481920
author Kacoutchy Jean Ayikpa
Valère-Carin Jofack Sokeng
Abou Bakary Ballo
Pierre Gouton
Koffi Fernand Kouamé
author_facet Kacoutchy Jean Ayikpa
Valère-Carin Jofack Sokeng
Abou Bakary Ballo
Pierre Gouton
Koffi Fernand Kouamé
author_sort Kacoutchy Jean Ayikpa
collection DOAJ
description Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study using machine learning to analyze different parameters from various sources of satellite imagery: multispectral optics (Landsat-8), radar (ALOS PALSAR), and soil and morphometric parameters (soil, altitude, slope, curvature, and shady). The data were preprocessed to remove atmospheric biases and harmonize spatial resolutions. Techniques such as principal component analysis, band ratios, and image fusion have made it possible to enrich imagery by highlighting spectral and textural characteristics. Finally, classifiers such as Random Forest, Gradient Boosting, and XGBoost (version 1.6.2) were used to evaluate the impact of each parameter on the classification. The results show that geographic parameters combined with PCA provide the best overall performance with Random Forest, achieving an accuracy of 55.29% and an MCC of 45.12% while ensuring a rapid training speed (3.6 s). The geographic parameters associated with the OLI spectrometric data show a good balance, with XGBoost achieving a slightly higher MCC (40.3%) with a moderate training time (7.9 s). On the other hand, the OLI spectrometric parameters coupled with PCA display significantly lower performance, with an accuracy of 45.05% and an MCC of 31.81% for Random Forest. These observations highlight the potential of geographic and geological parameters associated with suitable models to improve classification. The multi-source approach thus proves optimal for more robust and precise results.
format Article
id doaj-art-bf6b9e987aad44d5988bbffd1ee3426d
institution Kabale University
issn 2624-6120
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Signals
spelling doaj-art-bf6b9e987aad44d5988bbffd1ee3426d2025-08-20T03:44:00ZengMDPI AGSignals2624-61202025-03-01611210.3390/signals6010012Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western HighlandsKacoutchy Jean Ayikpa0Valère-Carin Jofack Sokeng1Abou Bakary Ballo2Pierre Gouton3Koffi Fernand Kouamé4Unité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan 28 BP 536, Côte d’IvoireUnité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan 28 BP 536, Côte d’IvoireUnité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan 28 BP 536, Côte d’IvoireUnité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan 28 BP 536, Côte d’IvoireUnité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan 28 BP 536, Côte d’IvoireAccurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study using machine learning to analyze different parameters from various sources of satellite imagery: multispectral optics (Landsat-8), radar (ALOS PALSAR), and soil and morphometric parameters (soil, altitude, slope, curvature, and shady). The data were preprocessed to remove atmospheric biases and harmonize spatial resolutions. Techniques such as principal component analysis, band ratios, and image fusion have made it possible to enrich imagery by highlighting spectral and textural characteristics. Finally, classifiers such as Random Forest, Gradient Boosting, and XGBoost (version 1.6.2) were used to evaluate the impact of each parameter on the classification. The results show that geographic parameters combined with PCA provide the best overall performance with Random Forest, achieving an accuracy of 55.29% and an MCC of 45.12% while ensuring a rapid training speed (3.6 s). The geographic parameters associated with the OLI spectrometric data show a good balance, with XGBoost achieving a slightly higher MCC (40.3%) with a moderate training time (7.9 s). On the other hand, the OLI spectrometric parameters coupled with PCA display significantly lower performance, with an accuracy of 45.05% and an MCC of 31.81% for Random Forest. These observations highlight the potential of geographic and geological parameters associated with suitable models to improve classification. The multi-source approach thus proves optimal for more robust and precise results.https://www.mdpi.com/2624-6120/6/1/12satellite imagerymulti-source approachmachine learningparameter fusiongeological data
spellingShingle Kacoutchy Jean Ayikpa
Valère-Carin Jofack Sokeng
Abou Bakary Ballo
Pierre Gouton
Koffi Fernand Kouamé
Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
Signals
satellite imagery
multi-source approach
machine learning
parameter fusion
geological data
title Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
title_full Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
title_fullStr Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
title_full_unstemmed Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
title_short Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
title_sort multi source satellite imagery and machine learning for detecting geological formations in cameroon s western highlands
topic satellite imagery
multi-source approach
machine learning
parameter fusion
geological data
url https://www.mdpi.com/2624-6120/6/1/12
work_keys_str_mv AT kacoutchyjeanayikpa multisourcesatelliteimageryandmachinelearningfordetectinggeologicalformationsincameroonswesternhighlands
AT valerecarinjofacksokeng multisourcesatelliteimageryandmachinelearningfordetectinggeologicalformationsincameroonswesternhighlands
AT aboubakaryballo multisourcesatelliteimageryandmachinelearningfordetectinggeologicalformationsincameroonswesternhighlands
AT pierregouton multisourcesatelliteimageryandmachinelearningfordetectinggeologicalformationsincameroonswesternhighlands
AT koffifernandkouame multisourcesatelliteimageryandmachinelearningfordetectinggeologicalformationsincameroonswesternhighlands