Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor

Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challen...

Full description

Saved in:
Bibliographic Details
Main Authors: Yeon Soo Lee, Seyoung Shin, Gyun Ro Kang, Siyeon Lee, Da Wan Kim, Seongcheol Park, Youngwook Cho, Dohyun Lim, Seung Hwan Jeon, Soo-Yeon Cho, Changhyun Pang
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-58425-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849765430067986432
author Yeon Soo Lee
Seyoung Shin
Gyun Ro Kang
Siyeon Lee
Da Wan Kim
Seongcheol Park
Youngwook Cho
Dohyun Lim
Seung Hwan Jeon
Soo-Yeon Cho
Changhyun Pang
author_facet Yeon Soo Lee
Seyoung Shin
Gyun Ro Kang
Siyeon Lee
Da Wan Kim
Seongcheol Park
Youngwook Cho
Dohyun Lim
Seung Hwan Jeon
Soo-Yeon Cho
Changhyun Pang
author_sort Yeon Soo Lee
collection DOAJ
description Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.
format Article
id doaj-art-bf62744da889403c8288201ce9a2899c
institution DOAJ
issn 2041-1723
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-bf62744da889403c8288201ce9a2899c2025-08-20T03:04:51ZengNature PortfolioNature Communications2041-17232025-04-0116111210.1038/s41467-025-58425-xSpatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensorYeon Soo Lee0Seyoung Shin1Gyun Ro Kang2Siyeon Lee3Da Wan Kim4Seongcheol Park5Youngwook Cho6Dohyun Lim7Seung Hwan Jeon8Soo-Yeon Cho9Changhyun Pang10School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)Department of Electronic Engineering, Korea National University of TransportationSchool of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.https://doi.org/10.1038/s41467-025-58425-x
spellingShingle Yeon Soo Lee
Seyoung Shin
Gyun Ro Kang
Siyeon Lee
Da Wan Kim
Seongcheol Park
Youngwook Cho
Dohyun Lim
Seung Hwan Jeon
Soo-Yeon Cho
Changhyun Pang
Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
Nature Communications
title Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
title_full Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
title_fullStr Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
title_full_unstemmed Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
title_short Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
title_sort spatiotemporal molecular tracing of ultralow volume biofluids via a soft skin adaptive optical monolithic patch sensor
url https://doi.org/10.1038/s41467-025-58425-x
work_keys_str_mv AT yeonsoolee spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT seyoungshin spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT gyunrokang spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT siyeonlee spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT dawankim spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT seongcheolpark spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT youngwookcho spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT dohyunlim spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT seunghwanjeon spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT sooyeoncho spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor
AT changhyunpang spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor