Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor
Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challen...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58425-x |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849765430067986432 |
|---|---|
| author | Yeon Soo Lee Seyoung Shin Gyun Ro Kang Siyeon Lee Da Wan Kim Seongcheol Park Youngwook Cho Dohyun Lim Seung Hwan Jeon Soo-Yeon Cho Changhyun Pang |
| author_facet | Yeon Soo Lee Seyoung Shin Gyun Ro Kang Siyeon Lee Da Wan Kim Seongcheol Park Youngwook Cho Dohyun Lim Seung Hwan Jeon Soo-Yeon Cho Changhyun Pang |
| author_sort | Yeon Soo Lee |
| collection | DOAJ |
| description | Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing. |
| format | Article |
| id | doaj-art-bf62744da889403c8288201ce9a2899c |
| institution | DOAJ |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-04-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-bf62744da889403c8288201ce9a2899c2025-08-20T03:04:51ZengNature PortfolioNature Communications2041-17232025-04-0116111210.1038/s41467-025-58425-xSpatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensorYeon Soo Lee0Seyoung Shin1Gyun Ro Kang2Siyeon Lee3Da Wan Kim4Seongcheol Park5Youngwook Cho6Dohyun Lim7Seung Hwan Jeon8Soo-Yeon Cho9Changhyun Pang10School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)Department of Electronic Engineering, Korea National University of TransportationSchool of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)School of Chemical Engineering, Sungkyunkwan University (SKKU)Abstract Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.https://doi.org/10.1038/s41467-025-58425-x |
| spellingShingle | Yeon Soo Lee Seyoung Shin Gyun Ro Kang Siyeon Lee Da Wan Kim Seongcheol Park Youngwook Cho Dohyun Lim Seung Hwan Jeon Soo-Yeon Cho Changhyun Pang Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor Nature Communications |
| title | Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor |
| title_full | Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor |
| title_fullStr | Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor |
| title_full_unstemmed | Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor |
| title_short | Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor |
| title_sort | spatiotemporal molecular tracing of ultralow volume biofluids via a soft skin adaptive optical monolithic patch sensor |
| url | https://doi.org/10.1038/s41467-025-58425-x |
| work_keys_str_mv | AT yeonsoolee spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT seyoungshin spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT gyunrokang spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT siyeonlee spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT dawankim spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT seongcheolpark spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT youngwookcho spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT dohyunlim spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT seunghwanjeon spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT sooyeoncho spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor AT changhyunpang spatiotemporalmoleculartracingofultralowvolumebiofluidsviaasoftskinadaptiveopticalmonolithicpatchsensor |