A Hybrid Deep Learning and Improved SVM Framework for Real-Time Railroad Construction Personnel Detection with Multi-Scale Feature Optimization

Railroad construction sites are high-risk environments where monitoring personnel safety is critical for preventing accidents and enhancing construction efficiency. Traditional manual monitoring and image processing methods exhibit deficiencies in real-time performance and accuracy. This paper propo...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianqiu Chen, Huan Xiong, Shixuan Zhou, Xiang Wang, Benxiao Lou, Longtang Ning, Qingwei Hu, Yang Tang, Guobin Gu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/7/2061
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Railroad construction sites are high-risk environments where monitoring personnel safety is critical for preventing accidents and enhancing construction efficiency. Traditional manual monitoring and image processing methods exhibit deficiencies in real-time performance and accuracy. This paper proposes a railway worker detection method based on improved support vector machines (ISVM), while using non-local mean noise reduction and histogram equalisation pre-processing techniques to optimise image quality to improve detection efficiency and accuracy. Multiscale features are then extracted with Inception v3 and combined with principal component analysis (PCA) for dimensionality reduction. Finally, an SVM classification algorithm is employed for personnel detection. To process small sample categories, data enhancement techniques (e.g., random flip and rotation) and K-fold cross-validation are applied to optimize the model parameters. The experimental results demonstrate that the ISVM method significantly improves accuracy and real-time performance compared to traditional detection methods and single deep learning models. This method provides technical support for railroad construction safety monitoring and effectively addresses personnel detection tasks in complex construction environments.
ISSN:1424-8220