A Hybrid Deep Learning and Improved SVM Framework for Real-Time Railroad Construction Personnel Detection with Multi-Scale Feature Optimization
Railroad construction sites are high-risk environments where monitoring personnel safety is critical for preventing accidents and enhancing construction efficiency. Traditional manual monitoring and image processing methods exhibit deficiencies in real-time performance and accuracy. This paper propo...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/7/2061 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Railroad construction sites are high-risk environments where monitoring personnel safety is critical for preventing accidents and enhancing construction efficiency. Traditional manual monitoring and image processing methods exhibit deficiencies in real-time performance and accuracy. This paper proposes a railway worker detection method based on improved support vector machines (ISVM), while using non-local mean noise reduction and histogram equalisation pre-processing techniques to optimise image quality to improve detection efficiency and accuracy. Multiscale features are then extracted with Inception v3 and combined with principal component analysis (PCA) for dimensionality reduction. Finally, an SVM classification algorithm is employed for personnel detection. To process small sample categories, data enhancement techniques (e.g., random flip and rotation) and K-fold cross-validation are applied to optimize the model parameters. The experimental results demonstrate that the ISVM method significantly improves accuracy and real-time performance compared to traditional detection methods and single deep learning models. This method provides technical support for railroad construction safety monitoring and effectively addresses personnel detection tasks in complex construction environments. |
|---|---|
| ISSN: | 1424-8220 |