A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities

Accurate urban wetland mapping requires reliable training samples, yet the cost reduction and efficiency enhancement of sample production in complex urban backgrounds remains challenging. This study introduces an automated framework Fusion Knowledge Rules and Spectral Matching (FKRSM) for training s...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhe Yang, Weiguo Jiang, Xiaogan Yin, Ziyan Ling, Xiaoya Wang, Miaolong Lin, Shuhui Lai, Xiao Li, Qiaozhen Guo, Zhijie Xiao, Ze Zhang, Qiuling Li, Peiyu Yang, Shihui Huang, Xiang Long, Keyi Yang, Kaifeng Peng, Yongbiao Yu, Xuan Liu, Yaheng Sheng, Xiaorui Ren, Xiangdong Yang, Haicheng Tian
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Ecological Indicators
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1470160X25010106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849229330990759936
author Zhe Yang
Weiguo Jiang
Xiaogan Yin
Ziyan Ling
Xiaoya Wang
Miaolong Lin
Shuhui Lai
Xiao Li
Qiaozhen Guo
Zhijie Xiao
Ze Zhang
Qiuling Li
Peiyu Yang
Shihui Huang
Xiang Long
Keyi Yang
Kaifeng Peng
Yongbiao Yu
Xuan Liu
Yaheng Sheng
Xiaorui Ren
Xiangdong Yang
Haicheng Tian
author_facet Zhe Yang
Weiguo Jiang
Xiaogan Yin
Ziyan Ling
Xiaoya Wang
Miaolong Lin
Shuhui Lai
Xiao Li
Qiaozhen Guo
Zhijie Xiao
Ze Zhang
Qiuling Li
Peiyu Yang
Shihui Huang
Xiang Long
Keyi Yang
Kaifeng Peng
Yongbiao Yu
Xuan Liu
Yaheng Sheng
Xiaorui Ren
Xiangdong Yang
Haicheng Tian
author_sort Zhe Yang
collection DOAJ
description Accurate urban wetland mapping requires reliable training samples, yet the cost reduction and efficiency enhancement of sample production in complex urban backgrounds remains challenging. This study introduces an automated framework Fusion Knowledge Rules and Spectral Matching (FKRSM) for training sample generation and migration. Implemented on Google Earth Engine (GEE), FKRSM applies dense Sentinel-2 time series and multi-source classification products to extract vegetation-hydrology dynamics, inundation frequency patterns, and geometric attributes of urban wetlands. A hybrid strategy combining index-threshold reclassification with morphological purification is used to delineate class-specific sample generation zone and to generate corresponding samples. A dual-constraint spectral matching method based on Spectral Angle Distance (SAD) and Euclidean Distance (ED) was developed to reduce the manual effort required for determining unchanged sample thresholds and to enable dynamic migration of urban wetland training samples. Tested across 43 Ramsar Wetland Cities (RWCs), FKRSM achieved automatic generation of 726,482 samples in the 2022 reference year with a sampling accuracy of 97.72 %. Migrated samples across 2016, 2018, 2020, and 2024 maintained an average accuracy of 92.53 %. Compared with recent research, FKRSM achieved 216.85 % of the performance (production time and classification accuracy) of prior methods in China’s first batch of 6 RWCs. FKRSM, with its demonstrated spatiotemporal generalizability, offers a scalable solution for ongoing fine-scale urban wetland mapping and further supports both six-year RWC re-accredited and new city accreditations.
format Article
id doaj-art-bf53c8f46bec4f17bf8fec3e202ce57a
institution Kabale University
issn 1470-160X
language English
publishDate 2025-09-01
publisher Elsevier
record_format Article
series Ecological Indicators
spelling doaj-art-bf53c8f46bec4f17bf8fec3e202ce57a2025-08-22T04:55:51ZengElsevierEcological Indicators1470-160X2025-09-0117811407810.1016/j.ecolind.2025.114078A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland CitiesZhe Yang0Weiguo Jiang1Xiaogan Yin2Ziyan Ling3Xiaoya Wang4Miaolong Lin5Shuhui Lai6Xiao Li7Qiaozhen Guo8Zhijie Xiao9Ze Zhang10Qiuling Li11Peiyu Yang12Shihui Huang13Xiang Long14Keyi Yang15Kaifeng Peng16Yongbiao Yu17Xuan Liu18Yaheng Sheng19Xiaorui Ren20Xiangdong Yang21Haicheng Tian22State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Corresponding author.State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaSchool of Information and Control Engineering. Qingdao University of Technology, Qingdao 266520, ChinaCollege of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaSchool of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaCollege of Geographical Science and Planning, Nanning Normal University, Nanning 530100, ChinaState Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; School of Information Engineering, China University of Geoscience, Beijing 100083, ChinaCollege of Geographical Science and Planning, Nanning Normal University, Nanning 530100, ChinaThe Institute for Advanced Study of Coastal Ecology, Ludong University, Shandong 264025, ChinaCollege of Land Science and Technology, China Agricultural University, Beijing 100083, ChinaFaculty of Geography, Tianjin Normal University, Tianjin 300387, ChinaCollege of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaCollege of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaSchool of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, ChinaSchool of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, ChinaSchool of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, ChinaSchool of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, ChinaAccurate urban wetland mapping requires reliable training samples, yet the cost reduction and efficiency enhancement of sample production in complex urban backgrounds remains challenging. This study introduces an automated framework Fusion Knowledge Rules and Spectral Matching (FKRSM) for training sample generation and migration. Implemented on Google Earth Engine (GEE), FKRSM applies dense Sentinel-2 time series and multi-source classification products to extract vegetation-hydrology dynamics, inundation frequency patterns, and geometric attributes of urban wetlands. A hybrid strategy combining index-threshold reclassification with morphological purification is used to delineate class-specific sample generation zone and to generate corresponding samples. A dual-constraint spectral matching method based on Spectral Angle Distance (SAD) and Euclidean Distance (ED) was developed to reduce the manual effort required for determining unchanged sample thresholds and to enable dynamic migration of urban wetland training samples. Tested across 43 Ramsar Wetland Cities (RWCs), FKRSM achieved automatic generation of 726,482 samples in the 2022 reference year with a sampling accuracy of 97.72 %. Migrated samples across 2016, 2018, 2020, and 2024 maintained an average accuracy of 92.53 %. Compared with recent research, FKRSM achieved 216.85 % of the performance (production time and classification accuracy) of prior methods in China’s first batch of 6 RWCs. FKRSM, with its demonstrated spatiotemporal generalizability, offers a scalable solution for ongoing fine-scale urban wetland mapping and further supports both six-year RWC re-accredited and new city accreditations.http://www.sciencedirect.com/science/article/pii/S1470160X25010106Urban wetland sampleKnowledge rulesSpectral matchingGoogle Earth EngineRamsar Wetland City
spellingShingle Zhe Yang
Weiguo Jiang
Xiaogan Yin
Ziyan Ling
Xiaoya Wang
Miaolong Lin
Shuhui Lai
Xiao Li
Qiaozhen Guo
Zhijie Xiao
Ze Zhang
Qiuling Li
Peiyu Yang
Shihui Huang
Xiang Long
Keyi Yang
Kaifeng Peng
Yongbiao Yu
Xuan Liu
Yaheng Sheng
Xiaorui Ren
Xiangdong Yang
Haicheng Tian
A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
Ecological Indicators
Urban wetland sample
Knowledge rules
Spectral matching
Google Earth Engine
Ramsar Wetland City
title A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
title_full A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
title_fullStr A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
title_full_unstemmed A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
title_short A generalizable framework for urban wetland training samples generation and migration: A case study of global Ramsar Wetland Cities
title_sort generalizable framework for urban wetland training samples generation and migration a case study of global ramsar wetland cities
topic Urban wetland sample
Knowledge rules
Spectral matching
Google Earth Engine
Ramsar Wetland City
url http://www.sciencedirect.com/science/article/pii/S1470160X25010106
work_keys_str_mv AT zheyang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT weiguojiang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoganyin ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT ziyanling ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoyawang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT miaolonglin ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT shuhuilai ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoli ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT qiaozhenguo ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT zhijiexiao ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT zezhang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT qiulingli ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT peiyuyang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT shihuihuang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xianglong ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT keyiyang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT kaifengpeng ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT yongbiaoyu ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xuanliu ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT yahengsheng ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoruiren ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiangdongyang ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT haichengtian ageneralizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT zheyang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT weiguojiang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoganyin generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT ziyanling generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoyawang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT miaolonglin generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT shuhuilai generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoli generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT qiaozhenguo generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT zhijiexiao generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT zezhang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT qiulingli generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT peiyuyang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT shihuihuang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xianglong generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT keyiyang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT kaifengpeng generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT yongbiaoyu generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xuanliu generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT yahengsheng generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiaoruiren generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT xiangdongyang generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities
AT haichengtian generalizableframeworkforurbanwetlandtrainingsamplesgenerationandmigrationacasestudyofglobalramsarwetlandcities