Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$

This paper considers the existence of multiple normalized solutions of the following $(2,q)$-Laplacian equation: \begin{equation*} \begin{cases} -\Delta u-\Delta_q u=\lambda u+h(\epsilon x)f(u), &\mathrm{in}\ \mathbb{R}^{N},\\ \int_{\mathbb{R}^{N}}|u|^2\mathrm{d}x=a^2, \end{cases} \end{equa...

Full description

Saved in:
Bibliographic Details
Main Authors: Renhua Chen, Li Wang, Xin Song
Format: Article
Language:English
Published: University of Szeged 2024-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10957
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846091039465537536
author Renhua Chen
Li Wang
Xin Song
author_facet Renhua Chen
Li Wang
Xin Song
author_sort Renhua Chen
collection DOAJ
description This paper considers the existence of multiple normalized solutions of the following $(2,q)$-Laplacian equation: \begin{equation*} \begin{cases} -\Delta u-\Delta_q u=\lambda u+h(\epsilon x)f(u), &\mathrm{in}\ \mathbb{R}^{N},\\ \int_{\mathbb{R}^{N}}|u|^2\mathrm{d}x=a^2, \end{cases} \end{equation*} where $2<q<N$, $\epsilon>0, a>0$ and $\lambda \in \mathbb{R}$ is a Lagrange multiplier which is unknown, $h$ is a continuous positive function and $f$ is also continuous satisfying $L^2$-subcritical growth. When $\epsilon$ is small enough, we show that the number of normalized solutions is at least the number of global maximum points of $h$ by Ekeland's variational principle.
format Article
id doaj-art-bef207812b0246c3b1f421305cb15370
institution Kabale University
issn 1417-3875
language English
publishDate 2024-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-bef207812b0246c3b1f421305cb153702025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-08-0120244811910.14232/ejqtde.2024.1.4810957Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$Renhua Chen0Li WangXin Song1College of Science, East China Jiaotong University, Nanchang, ChinaCollege of Science, East China Jiaotong University, Nanchang, ChinaThis paper considers the existence of multiple normalized solutions of the following $(2,q)$-Laplacian equation: \begin{equation*} \begin{cases} -\Delta u-\Delta_q u=\lambda u+h(\epsilon x)f(u), &\mathrm{in}\ \mathbb{R}^{N},\\ \int_{\mathbb{R}^{N}}|u|^2\mathrm{d}x=a^2, \end{cases} \end{equation*} where $2<q<N$, $\epsilon>0, a>0$ and $\lambda \in \mathbb{R}$ is a Lagrange multiplier which is unknown, $h$ is a continuous positive function and $f$ is also continuous satisfying $L^2$-subcritical growth. When $\epsilon$ is small enough, we show that the number of normalized solutions is at least the number of global maximum points of $h$ by Ekeland's variational principle.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10957normalized solutionmultiplicity$(2q)$-laplacianvariational methods
spellingShingle Renhua Chen
Li Wang
Xin Song
Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
Electronic Journal of Qualitative Theory of Differential Equations
normalized solution
multiplicity
$(2
q)$-laplacian
variational methods
title Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
title_full Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
title_fullStr Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
title_full_unstemmed Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
title_short Multiple normalized solutions for $(2,q)$-Laplacian equation problems in whole $\mathbb{R}^{N}$
title_sort multiple normalized solutions for 2 q laplacian equation problems in whole mathbb r n
topic normalized solution
multiplicity
$(2
q)$-laplacian
variational methods
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10957
work_keys_str_mv AT renhuachen multiplenormalizedsolutionsfor2qlaplacianequationproblemsinwholemathbbrn
AT liwang multiplenormalizedsolutionsfor2qlaplacianequationproblemsinwholemathbbrn
AT xinsong multiplenormalizedsolutionsfor2qlaplacianequationproblemsinwholemathbbrn