Mechanism of fault activation and water-conducting disasters induced by mining activities

Stress disturbances induced by mining activities are among the primary factors promoting deep fault activation. In coal seam mining under the threat of high-pressure confined water, fault activation significantly increases the risk of water inrush. This study employs theoretical analysis, numerical...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian Chen, Lianchong Li, Wenqiang Mu, Xinrui Li
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Geomatics, Natural Hazards & Risk
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/19475705.2025.2462177
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stress disturbances induced by mining activities are among the primary factors promoting deep fault activation. In coal seam mining under the threat of high-pressure confined water, fault activation significantly increases the risk of water inrush. This study employs theoretical analysis, numerical simulations, and field micro-seismic (MS) monitoring to investigate the fault activation-induced water-conducting processes in mining areas under deep confined water conditions. Theoretical and numerical analyses were conducted to identify the shortest water-conducting pathway triggered by fault activation. Field MS data revealed that fault activation under mining influence progresses through three distinct stages: the abutment stress propagation stage, the abutment stress disturbance stage, and the abutment stress action stage. By analyzing the characteristics of fault activation, this research provides a theoretical foundation for early warning and prevention of geological hazards induced by fault activation.
ISSN:1947-5705
1947-5713