On Third-Order Linear Recurrent Functions
A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2019-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2019/9489437 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850178933814722560 |
|---|---|
| author | Kodjo Essonana Magnani |
| author_facet | Kodjo Essonana Magnani |
| author_sort | Kodjo Essonana Magnani |
| collection | DOAJ |
| description | A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2. |
| format | Article |
| id | doaj-art-be05204f0ece44f89621fe53df2b35d7 |
| institution | OA Journals |
| issn | 1026-0226 1607-887X |
| language | English |
| publishDate | 2019-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Discrete Dynamics in Nature and Society |
| spelling | doaj-art-be05204f0ece44f89621fe53df2b35d72025-08-20T02:18:36ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2019-01-01201910.1155/2019/94894379489437On Third-Order Linear Recurrent FunctionsKodjo Essonana Magnani0Département de Mathématiques, Université de Lomé, BP 1515 Lomé, TogoA function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2.http://dx.doi.org/10.1155/2019/9489437 |
| spellingShingle | Kodjo Essonana Magnani On Third-Order Linear Recurrent Functions Discrete Dynamics in Nature and Society |
| title | On Third-Order Linear Recurrent Functions |
| title_full | On Third-Order Linear Recurrent Functions |
| title_fullStr | On Third-Order Linear Recurrent Functions |
| title_full_unstemmed | On Third-Order Linear Recurrent Functions |
| title_short | On Third-Order Linear Recurrent Functions |
| title_sort | on third order linear recurrent functions |
| url | http://dx.doi.org/10.1155/2019/9489437 |
| work_keys_str_mv | AT kodjoessonanamagnani onthirdorderlinearrecurrentfunctions |