Comparison between Statistical Approaches and Data Mining Algorithms for Outlier Detection

Outliers are observation values that are very different from most observations. The presence of outliers in data can have a negative impact on research but can contain important information for other research. So, identifying outliers before conducting data analysis is a crucial thing to do. Outlier...

Full description

Saved in:
Bibliographic Details
Main Authors: Annisa Putri Utami, Anwar Fitrianto, Khairil Anwar Notodiputro
Format: Article
Language:English
Published: Mathematics Department UIN Maulana Malik Ibrahim Malang 2024-05-01
Series:Cauchy: Jurnal Matematika Murni dan Aplikasi
Subjects:
Online Access:https://ejournal.uin-malang.ac.id/index.php/Math/article/view/25450
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Outliers are observation values that are very different from most observations. The presence of outliers in data can have a negative impact on research but can contain important information for other research. So, identifying outliers before conducting data analysis is a crucial thing to do. Outlier detection methods/techniques were first pioneered by researchers in statistics. However, due to rapid technological advances which have an impact on the ease of collecting extensive data, the development of outlier detection techniques is now handled mainly by researchers in the field of computer science (data mining) using computing facilities. This research aims to examine the results of simulation studies by comparing methods for identifying several outliers using statistical approaches and data mining algorithm approaches in various predetermined data scenarios. Based on the scenario carried out, the outlier detection method using a statistical approach is generally better than the outlier detection method using a data mining-based approach. Suggestions for further research are to improve the data mining method by focusing more on statistical analysis apart from focusing on data processing computing time so that the expected results of outlier detection are faster and more precise.
ISSN:2086-0382
2477-3344