The role of trustworthy and reliable AI for multiple sclerosis
This paper investigates the importance of Trustworthy Machine Learning (ML) in the context of Multiple Sclerosis (MS) research and care. Due to the complex and individual nature of MS, the need for reliable and trustworthy ML models is essential. In this paper, key aspects of trustworthy ML, such as...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-03-01
|
| Series: | Frontiers in Digital Health |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fdgth.2025.1507159/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates the importance of Trustworthy Machine Learning (ML) in the context of Multiple Sclerosis (MS) research and care. Due to the complex and individual nature of MS, the need for reliable and trustworthy ML models is essential. In this paper, key aspects of trustworthy ML, such as out-of-distribution generalization, explainability, uncertainty quantification and calibration are explored, highlighting their significance for healthcare applications. Challenges in integrating these ML tools into clinical workflows are addressed, discussing the difficulties in interpreting AI outputs, data diversity, and the need for comprehensive, quality data. It calls for collaborative efforts among researchers, clinicians, and policymakers to develop ML solutions that are technically sound, clinically relevant, and patient-centric. |
|---|---|
| ISSN: | 2673-253X |