A Global Optimization Algorithm for Generalized Quadratic Programming
We present a global optimization algorithm for solving generalized quadratic programming (GQP), that is, nonconvex quadratic programming with nonconvex quadratic constraints. By utilizing a new linearizing technique, the initial nonconvex programming problem (GQP) is reduced to a sequence of relaxat...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2013/215312 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a global optimization algorithm for solving generalized quadratic programming (GQP), that is, nonconvex quadratic programming with nonconvex quadratic constraints. By utilizing a new linearizing technique, the initial nonconvex programming problem (GQP) is reduced to a sequence of relaxation linear programming problems. To improve the computational efficiency of the algorithm, a range reduction technique is employed in the branch and bound procedure. The proposed algorithm is convergent to the global minimum of the (GQP) by means of the subsequent solutions of a series of relaxation linear programming problems. Finally, numerical results show the robustness and effectiveness of the proposed algorithm. |
---|---|
ISSN: | 1110-757X 1687-0042 |