Integrative and comparative analysis of whole-transcriptome sequencing in circCOL1A1-knockdown and circCOL1A1-overexpressing goat hair follicle stem cells

Objective Hair morphogenesis is tightly related to hair follicle stem cells (HFSCs) proliferation and hair follicle (HF) development. Yangtze River Delta white goats (YRDWG) HFSCs are important for producing superior-quality brush hair (SQBH). Nonetheless, the known regulatory mechanisms are not suf...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian Wang, Xi Wu, Liuming Zhang, Xiaomei Sun, Wei Sun, Kunzhe Dong, Yongjun Li
Format: Article
Language:English
Published: Asian-Australasian Association of Animal Production Societies 2025-06-01
Series:Animal Bioscience
Subjects:
Online Access:http://www.animbiosci.org/upload/pdf/ab-24-0816.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective Hair morphogenesis is tightly related to hair follicle stem cells (HFSCs) proliferation and hair follicle (HF) development. Yangtze River Delta white goats (YRDWG) HFSCs are important for producing superior-quality brush hair (SQBH). Nonetheless, the known regulatory mechanisms are not sufficient to explain YRDWG gHFSCs growth, HF development, and SQBH formation. Methods To deeply investigate the interaction networks and mechanisms of circCOL1A1 in the HF development and SQBH formation of YRDWG in detail, we applied whole-transcriptome sequencing and bioinformatics analysis of circCOL1A1-knockdown and circCOL1A1-overexpressing HFSCs from YRDWG. STRING and other databases were used to construct multiple interaction networks. Differentially expressed (DE) genes, DE-miRNAs, and DE-circRNAs were further confirmed via real-time quantitative polymerase chain reaction and Sanger sequencing. Results A total of 87 genes, 96 miRNAs, and 135 circRNAs were DE between circCOL1A1-knockdown and circCOL1A1-overexpressing gHFSCs. Functional enrichment, gene ontology annotation and Kyoto encyclopedia of genes and genomes analyses identified marked enrichment of these DE- genes, DE-miRNAs, and DE-circRNAs in the MAPK, PI3K/Akt, and focal adhesion signaling pathways, which are closely associated with gHFSCs growth and HF development. In addition, through interaction network construction, four important regulatory axes were obtained, namely, the chi-circCOL1A1-miR-149-5p-CMTM3-AR, chi-circACTN1- miR-671-5p-MAPK3/COL13A1, chi-circITGA6-miR-18a-5p-FGF1/MAP3K1 and chi-circ COBLL1-miR-30a-5p/miR-128-3p-ITGA6/MAPK14/FGF14 axes. Conclusion These novel findings provide a valuable and comprehensive basis for investigating the complex mechanism by which circRNAs participate in and regulate HF development and SQBH formation in YRDWG.
ISSN:2765-0189
2765-0235