Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser

Abstract Today’s precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quant...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrei Isichenko, Andrew S. Hunter, Debapam Bose, Nitesh Chauhan, Meiting Song, Kaikai Liu, Mark W. Harrington, Daniel J. Blumenthal
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-76699-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850162661312954368
author Andrei Isichenko
Andrew S. Hunter
Debapam Bose
Nitesh Chauhan
Meiting Song
Kaikai Liu
Mark W. Harrington
Daniel J. Blumenthal
author_facet Andrei Isichenko
Andrew S. Hunter
Debapam Bose
Nitesh Chauhan
Meiting Song
Kaikai Liu
Mark W. Harrington
Daniel J. Blumenthal
author_sort Andrei Isichenko
collection DOAJ
description Abstract Today’s precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quantum gates. Wafer-scale integration of these lasers is critical for enabling systems-on-chip. Despite progress towards chip-scale 780 nm ultra-narrow linewidth lasers, achieving sub-Hz fundamental linewidth and sub-kHz integral linewidth has remained elusive. Here we report a hybrid integrated 780 nm self-injection locked laser with 0.74 Hz fundamental and 864 Hz integral linewidths and thermorefractive-noise-limited 100 Hz2/Hz at 10 kHz. These linewidths are over an order of magnitude lower than previous photonic-integrated 780 nm implementations. The laser consists of a Fabry-Pérot diode edge-coupled to an on-chip splitter and a tunable 90 million Q resonator realized in the CMOS foundry-compatible silicon nitride platform. We achieve 2 mW output power, 36 dB side mode suppression ratio, and a 2.5 GHz mode-hop-free tuning range. To demonstrate the potential for quantum atomic applications, we analyze the laser noise influence on sensitivity limits for atomic clocks, quantum gates, and atom interferometer gravimeters. This technology can be translated to other atomic wavelengths, enabling compact, ultra-low noise lasers for quantum sensing, computing, and metrology.
format Article
id doaj-art-bcba91682f304b3e936612b8e724236e
institution OA Journals
issn 2045-2322
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-bcba91682f304b3e936612b8e724236e2025-08-20T02:22:30ZengNature PortfolioScientific Reports2045-23222024-11-011411910.1038/s41598-024-76699-xSub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laserAndrei Isichenko0Andrew S. Hunter1Debapam Bose2Nitesh Chauhan3Meiting Song4Kaikai Liu5Mark W. Harrington6Daniel J. Blumenthal7Department of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraDepartment of Electrical and Computer Engineering, University of California Santa BarbaraAbstract Today’s precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quantum gates. Wafer-scale integration of these lasers is critical for enabling systems-on-chip. Despite progress towards chip-scale 780 nm ultra-narrow linewidth lasers, achieving sub-Hz fundamental linewidth and sub-kHz integral linewidth has remained elusive. Here we report a hybrid integrated 780 nm self-injection locked laser with 0.74 Hz fundamental and 864 Hz integral linewidths and thermorefractive-noise-limited 100 Hz2/Hz at 10 kHz. These linewidths are over an order of magnitude lower than previous photonic-integrated 780 nm implementations. The laser consists of a Fabry-Pérot diode edge-coupled to an on-chip splitter and a tunable 90 million Q resonator realized in the CMOS foundry-compatible silicon nitride platform. We achieve 2 mW output power, 36 dB side mode suppression ratio, and a 2.5 GHz mode-hop-free tuning range. To demonstrate the potential for quantum atomic applications, we analyze the laser noise influence on sensitivity limits for atomic clocks, quantum gates, and atom interferometer gravimeters. This technology can be translated to other atomic wavelengths, enabling compact, ultra-low noise lasers for quantum sensing, computing, and metrology.https://doi.org/10.1038/s41598-024-76699-xPhotonic integrationLaser stabilizationRubidiumNarrow-linewidth lasers
spellingShingle Andrei Isichenko
Andrew S. Hunter
Debapam Bose
Nitesh Chauhan
Meiting Song
Kaikai Liu
Mark W. Harrington
Daniel J. Blumenthal
Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
Scientific Reports
Photonic integration
Laser stabilization
Rubidium
Narrow-linewidth lasers
title Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
title_full Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
title_fullStr Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
title_full_unstemmed Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
title_short Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
title_sort sub hz fundamental sub khz integral linewidth self injection locked 780 nm hybrid integrated laser
topic Photonic integration
Laser stabilization
Rubidium
Narrow-linewidth lasers
url https://doi.org/10.1038/s41598-024-76699-x
work_keys_str_mv AT andreiisichenko subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT andrewshunter subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT debapambose subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT niteshchauhan subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT meitingsong subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT kaikailiu subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT markwharrington subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser
AT danieljblumenthal subhzfundamentalsubkhzintegrallinewidthselfinjectionlocked780nmhybridintegratedlaser