Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign
<p>Global warming is amplified in the Arctic. However, numerical models struggle to represent key processes that determine Arctic weather and climate. To collect data that help to constrain the models, the HALO–(<span class="inline-formula">𝒜𝒞</span>)<span class="...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2024-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/24/8865/2024/acp-24-8865-2024.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823856451527901184 |
---|---|
author | M. Wendisch S. Crewell A. Ehrlich A. Herber B. Kirbus C. Lüpkes M. Mech S. J. Abel E. F. Akansu F. Ament C. Aubry C. Aubry S. Becker S. Borrmann S. Borrmann H. Bozem M. Brückner H.-C. Clemen S. Dahlke G. Dekoutsidis J. Delanoë E. De La Torre Castro E. De La Torre Castro E. De La Torre Castro H. Dorff R. Dupuy O. Eppers F. Ewald G. George G. George I. V. Gorodetskaya S. Grawe S. Groß J. Hartmann S. Henning L. Hirsch E. Jäkel P. Joppe P. Joppe O. Jourdan Z. Jurányi M. Karalis M. Kellermann M. Klingebiel M. Lonardi M. Lonardi J. Lucke J. Lucke A. E. Luebke M. Maahn N. Maherndl M. Maturilli B. Mayer J. Mayer S. Mertes J. Michaelis J. Michaelis M. Michalkov G. Mioche M. Moser M. Moser H. Müller R. Neggers D. Ori D. Paul F. M. Paulus C. Pilz F. Pithan M. Pöhlker M. Pöhlker V. Pörtge M. Ringel N. Risse G. C. Roberts S. Rosenburg J. Röttenbacher J. Rückert M. Schäfer J. Schaefer V. Schemann I. Schirmacher J. Schmidt S. Schmidt J. Schneider S. Schnitt A. Schwarz H. Siebert H. Sodemann H. Sodemann T. Sperzel T. Sperzel G. Spreen B. Stevens F. Stratmann G. Svensson C. Tatzelt T. Tuch T. Vihma C. Voigt C. Voigt L. Volkmer A. Walbröl A. Weber B. Wehner B. Wetzel M. Wirth T. Zinner |
author_facet | M. Wendisch S. Crewell A. Ehrlich A. Herber B. Kirbus C. Lüpkes M. Mech S. J. Abel E. F. Akansu F. Ament C. Aubry C. Aubry S. Becker S. Borrmann S. Borrmann H. Bozem M. Brückner H.-C. Clemen S. Dahlke G. Dekoutsidis J. Delanoë E. De La Torre Castro E. De La Torre Castro E. De La Torre Castro H. Dorff R. Dupuy O. Eppers F. Ewald G. George G. George I. V. Gorodetskaya S. Grawe S. Groß J. Hartmann S. Henning L. Hirsch E. Jäkel P. Joppe P. Joppe O. Jourdan Z. Jurányi M. Karalis M. Kellermann M. Klingebiel M. Lonardi M. Lonardi J. Lucke J. Lucke A. E. Luebke M. Maahn N. Maherndl M. Maturilli B. Mayer J. Mayer S. Mertes J. Michaelis J. Michaelis M. Michalkov G. Mioche M. Moser M. Moser H. Müller R. Neggers D. Ori D. Paul F. M. Paulus C. Pilz F. Pithan M. Pöhlker M. Pöhlker V. Pörtge M. Ringel N. Risse G. C. Roberts S. Rosenburg J. Röttenbacher J. Rückert M. Schäfer J. Schaefer V. Schemann I. Schirmacher J. Schmidt S. Schmidt J. Schneider S. Schnitt A. Schwarz H. Siebert H. Sodemann H. Sodemann T. Sperzel T. Sperzel G. Spreen B. Stevens F. Stratmann G. Svensson C. Tatzelt T. Tuch T. Vihma C. Voigt C. Voigt L. Volkmer A. Walbröl A. Weber B. Wehner B. Wetzel M. Wirth T. Zinner |
author_sort | M. Wendisch |
collection | DOAJ |
description | <p>Global warming is amplified in the Arctic. However, numerical models struggle to represent key processes that determine Arctic weather and climate. To collect data that help to constrain the models, the HALO–(<span class="inline-formula">𝒜𝒞</span>)<span class="inline-formula"><sup>3</sup></span> aircraft campaign was conducted over the Norwegian and Greenland seas, the Fram Strait, and the central Arctic Ocean in March and April 2022. The campaign focused on one specific challenge posed by the models, namely the reasonable representation of transformations of air masses during their meridional transport into and out of the Arctic via northward moist- and warm-air intrusions (WAIs) and southward marine cold-air outbreaks (CAOs). Observations were made over areas of open ocean, the marginal sea ice zone, and the central Arctic sea ice. Two low-flying and one long-range, high-altitude research aircraft were flown in colocated formation whenever possible. To follow the air mass transformations, a quasi-Lagrangian flight strategy using trajectory calculations was realized, enabling us to sample the same moving-air parcels twice along their trajectories. Seven distinct WAI and 12 CAO cases were probed. From the quasi-Lagrangian measurements, we have quantified the diabatic heating/cooling and moistening/drying of the transported air masses. During CAOs, maximum values of 3 K h<span class="inline-formula"><sup>−1</sup></span> warming and 0.3 g kg<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span> moistening were obtained below 1 km altitude. From the observations of WAIs, diabatic cooling rates of up to 0.4 K h<span class="inline-formula"><sup>−1</sup></span> and a moisture loss of up to 0.1 g kg<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span> from the ground to about 5.5 km altitude were derived. Furthermore, the development of cloud macrophysical (cloud-top height and horizontal cloud cover) and microphysical (liquid water path, precipitation, and ice index) properties along the southward pathways of the air masses were documented during CAOs, and the moisture budget during a specific WAI event was estimated. In addition, we discuss the statistical frequency of occurrence of the different thermodynamic phases of Arctic low-level clouds, the interaction of Arctic cirrus clouds with sea ice and water vapor, and the characteristics of microphysical and chemical properties of Arctic aerosol particles. Finally, we provide a proof of concept to measure mesoscale divergence and subsidence in the Arctic using data from dropsondes released during the flights.</p> |
format | Article |
id | doaj-art-bca9d009d9254c2ea20e8a7af06088e2 |
institution | Kabale University |
issn | 1680-7316 1680-7324 |
language | English |
publishDate | 2024-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj-art-bca9d009d9254c2ea20e8a7af06088e22025-02-12T08:27:53ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242024-08-01248865889210.5194/acp-24-8865-2024Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaignM. Wendisch0S. Crewell1A. Ehrlich2A. Herber3B. Kirbus4C. Lüpkes5M. Mech6S. J. Abel7E. F. Akansu8F. Ament9C. Aubry10C. Aubry11S. Becker12S. Borrmann13S. Borrmann14H. Bozem15M. Brückner16H.-C. Clemen17S. Dahlke18G. Dekoutsidis19J. Delanoë20E. De La Torre Castro21E. De La Torre Castro22E. De La Torre Castro23H. Dorff24R. Dupuy25O. Eppers26F. Ewald27G. George28G. George29I. V. Gorodetskaya30S. Grawe31S. Groß32J. Hartmann33S. Henning34L. Hirsch35E. Jäkel36P. Joppe37P. Joppe38O. Jourdan39Z. Jurányi40M. Karalis41M. Kellermann42M. Klingebiel43M. Lonardi44M. Lonardi45J. Lucke46J. Lucke47A. E. Luebke48M. Maahn49N. Maherndl50M. Maturilli51B. Mayer52J. Mayer53S. Mertes54J. Michaelis55J. Michaelis56M. Michalkov57G. Mioche58M. Moser59M. Moser60H. Müller61R. Neggers62D. Ori63D. Paul64F. M. Paulus65C. Pilz66F. Pithan67M. Pöhlker68M. Pöhlker69V. Pörtge70M. Ringel71N. Risse72G. C. Roberts73S. Rosenburg74J. Röttenbacher75J. Rückert76M. Schäfer77J. Schaefer78V. Schemann79I. Schirmacher80J. Schmidt81S. Schmidt82J. Schneider83S. Schnitt84A. Schwarz85H. Siebert86H. Sodemann87H. Sodemann88T. Sperzel89T. Sperzel90G. Spreen91B. Stevens92F. Stratmann93G. Svensson94C. Tatzelt95T. Tuch96T. Vihma97C. Voigt98C. Voigt99L. Volkmer100A. Walbröl101A. Weber102B. Wehner103B. Wetzel104M. Wirth105T. Zinner106Leipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyPhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyPhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyMet Office, Exeter, United KingdomAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyMeteorologisches Institut, Universität Hamburg, Hamburg, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyLaboratoire Atmosphères, Milieux et Observations Spatiales (LATMOS), Centre National de la Recherche Scientifique (CNRS), Guyancourt, FranceLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAbteilung für Partikelchemie, Max-Planck-Institut für Chemie (MPIC), Mainz, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAbteilung für Partikelchemie, Max-Planck-Institut für Chemie (MPIC), Mainz, GermanyPhysik der Atmosphäre, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Potsdam, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyLaboratoire Atmosphères, Milieux et Observations Spatiales (LATMOS), Centre National de la Recherche Scientifique (CNRS), Guyancourt, FranceInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyFaculteit Luchtvaart- en Ruimtevaarttechniek, Technische Universiteit Delft, Delft, the NetherlandsMeteorologisches Institut, Universität Hamburg, Hamburg, GermanyLaboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Clermont-Ferrand, FranceAbteilung für Partikelchemie, Max-Planck-Institut für Chemie (MPIC), Mainz, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyKlimaphysik, Max-Planck-Institut für Meteorologie (MPI-M), Hamburg, Germanynow at: Faculty of Civil Engineering and Geosciences, Delft University of Technology (TU Delft), Delft, the NetherlandsCentro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Aveiro, PortugalAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyPhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyKlimaphysik, Max-Planck-Institut für Meteorologie (MPI-M), Hamburg, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAbteilung für Partikelchemie, Max-Planck-Institut für Chemie (MPIC), Mainz, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyLaboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Clermont-Ferrand, FrancePhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, GermanyDepartment of Meteorology and Bolin Centre for Climate research, Stockholm University, Stockholm, SwedenAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, Germanynow at: Extreme Environments Research Laboratory (EERL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, SwitzerlandInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyFaculteit Luchtvaart- en Ruimtevaarttechniek, Technische Universiteit Delft, Delft, the NetherlandsLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyPhysik der Atmosphäre, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Potsdam, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyPhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, Germanynow at: Maritime Klimatologie, Maritim-klimatologische Analysen und Produkte, Deutscher Wetterdienst (DWD), Hamburg, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyLaboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Clermont-Ferrand, FranceInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyPhysik der Atmosphäre Bremerhaven, Alfred–Wegener–Institut, Helmholtz–Zentrum für Polar– und Meeresforschung (AWI), Bremerhaven, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyMeteorologisches Institut, Universität Hamburg, Hamburg, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyScripps Institution of Oceanography, University of California San Diego, La Jolla, USALeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyInstitut für Umweltphysik (IUP), Universität Bremen, Bremen, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyDepartment of Atmospheric and Oceanic Sciences, Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO, USAAbteilung für Partikelchemie, Max-Planck-Institut für Chemie (MPIC), Mainz, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayLeipziger Institut für Meteorologie (LIM), Universität Leipzig, Leipzig, Germanynow at: Abteilung Klima und Umwelt, Deutscher Wetterdienst, Offenbach am Main, GermanyInstitut für Umweltphysik (IUP), Universität Bremen, Bremen, GermanyKlimaphysik, Max-Planck-Institut für Meteorologie (MPI-M), Hamburg, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyDepartment of Meteorology and Bolin Centre for Climate research, Stockholm University, Stockholm, SwedenAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyFinnish Meteorological Institute (FMI), Helsinki, FinlandInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyInstitut für Geophysik und Meteorologie (IGM), Universität zu Köln, Cologne, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyAtmosphärische Mikrophysik, Leibniz–Institut für Troposphärenforschung (TROPOS), Leipzig, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany<p>Global warming is amplified in the Arctic. However, numerical models struggle to represent key processes that determine Arctic weather and climate. To collect data that help to constrain the models, the HALO–(<span class="inline-formula">𝒜𝒞</span>)<span class="inline-formula"><sup>3</sup></span> aircraft campaign was conducted over the Norwegian and Greenland seas, the Fram Strait, and the central Arctic Ocean in March and April 2022. The campaign focused on one specific challenge posed by the models, namely the reasonable representation of transformations of air masses during their meridional transport into and out of the Arctic via northward moist- and warm-air intrusions (WAIs) and southward marine cold-air outbreaks (CAOs). Observations were made over areas of open ocean, the marginal sea ice zone, and the central Arctic sea ice. Two low-flying and one long-range, high-altitude research aircraft were flown in colocated formation whenever possible. To follow the air mass transformations, a quasi-Lagrangian flight strategy using trajectory calculations was realized, enabling us to sample the same moving-air parcels twice along their trajectories. Seven distinct WAI and 12 CAO cases were probed. From the quasi-Lagrangian measurements, we have quantified the diabatic heating/cooling and moistening/drying of the transported air masses. During CAOs, maximum values of 3 K h<span class="inline-formula"><sup>−1</sup></span> warming and 0.3 g kg<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span> moistening were obtained below 1 km altitude. From the observations of WAIs, diabatic cooling rates of up to 0.4 K h<span class="inline-formula"><sup>−1</sup></span> and a moisture loss of up to 0.1 g kg<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span> from the ground to about 5.5 km altitude were derived. Furthermore, the development of cloud macrophysical (cloud-top height and horizontal cloud cover) and microphysical (liquid water path, precipitation, and ice index) properties along the southward pathways of the air masses were documented during CAOs, and the moisture budget during a specific WAI event was estimated. In addition, we discuss the statistical frequency of occurrence of the different thermodynamic phases of Arctic low-level clouds, the interaction of Arctic cirrus clouds with sea ice and water vapor, and the characteristics of microphysical and chemical properties of Arctic aerosol particles. Finally, we provide a proof of concept to measure mesoscale divergence and subsidence in the Arctic using data from dropsondes released during the flights.</p>https://acp.copernicus.org/articles/24/8865/2024/acp-24-8865-2024.pdf |
spellingShingle | M. Wendisch S. Crewell A. Ehrlich A. Herber B. Kirbus C. Lüpkes M. Mech S. J. Abel E. F. Akansu F. Ament C. Aubry C. Aubry S. Becker S. Borrmann S. Borrmann H. Bozem M. Brückner H.-C. Clemen S. Dahlke G. Dekoutsidis J. Delanoë E. De La Torre Castro E. De La Torre Castro E. De La Torre Castro H. Dorff R. Dupuy O. Eppers F. Ewald G. George G. George I. V. Gorodetskaya S. Grawe S. Groß J. Hartmann S. Henning L. Hirsch E. Jäkel P. Joppe P. Joppe O. Jourdan Z. Jurányi M. Karalis M. Kellermann M. Klingebiel M. Lonardi M. Lonardi J. Lucke J. Lucke A. E. Luebke M. Maahn N. Maherndl M. Maturilli B. Mayer J. Mayer S. Mertes J. Michaelis J. Michaelis M. Michalkov G. Mioche M. Moser M. Moser H. Müller R. Neggers D. Ori D. Paul F. M. Paulus C. Pilz F. Pithan M. Pöhlker M. Pöhlker V. Pörtge M. Ringel N. Risse G. C. Roberts S. Rosenburg J. Röttenbacher J. Rückert M. Schäfer J. Schaefer V. Schemann I. Schirmacher J. Schmidt S. Schmidt J. Schneider S. Schnitt A. Schwarz H. Siebert H. Sodemann H. Sodemann T. Sperzel T. Sperzel G. Spreen B. Stevens F. Stratmann G. Svensson C. Tatzelt T. Tuch T. Vihma C. Voigt C. Voigt L. Volkmer A. Walbröl A. Weber B. Wehner B. Wetzel M. Wirth T. Zinner Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign Atmospheric Chemistry and Physics |
title | Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign |
title_full | Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign |
title_fullStr | Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign |
title_full_unstemmed | Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign |
title_short | Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)<sup>3</sup> aircraft campaign |
title_sort | overview quasi lagrangian observations of arctic air mass transformations introduction and initial results of the halo 𝒜 𝒞 sup 3 sup aircraft campaign |
url | https://acp.copernicus.org/articles/24/8865/2024/acp-24-8865-2024.pdf |
work_keys_str_mv | AT mwendisch overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT screwell overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT aehrlich overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT aherber overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT bkirbus overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT clupkes overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmech overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sjabel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT efakansu overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT fament overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT caubry overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT caubry overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sbecker overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sborrmann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sborrmann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hbozem overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mbruckner overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hcclemen overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sdahlke overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT gdekoutsidis overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jdelanoe overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT edelatorrecastro overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT edelatorrecastro overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT edelatorrecastro overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hdorff overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT rdupuy overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT oeppers overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT fewald overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ggeorge overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ggeorge overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ivgorodetskaya overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sgrawe overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sgroß overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jhartmann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT shenning overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT lhirsch overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ejakel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT pjoppe overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT pjoppe overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ojourdan overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT zjuranyi overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mkaralis overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mkellermann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mklingebiel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mlonardi overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mlonardi overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jlucke overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jlucke overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT aeluebke overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmaahn overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT nmaherndl overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmaturilli overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT bmayer overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jmayer overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT smertes overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jmichaelis overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jmichaelis overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmichalkov overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT gmioche overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmoser overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mmoser overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hmuller overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT rneggers overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT dori overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT dpaul overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT fmpaulus overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT cpilz overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT fpithan overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mpohlker overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mpohlker overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT vportge overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mringel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT nrisse overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT gcroberts overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT srosenburg overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jrottenbacher overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jruckert overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mschafer overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jschaefer overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT vschemann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ischirmacher overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jschmidt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sschmidt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT jschneider overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT sschnitt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT aschwarz overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hsiebert overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hsodemann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT hsodemann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT tsperzel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT tsperzel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT gspreen overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT bstevens overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT fstratmann overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT gsvensson overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ctatzelt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT ttuch overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT tvihma overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT cvoigt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT cvoigt overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT lvolkmer overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT awalbrol overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT aweber overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT bwehner overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT bwetzel overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT mwirth overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign AT tzinner overviewquasilagrangianobservationsofarcticairmasstransformationsintroductionandinitialresultsofthehaloacsup3supaircraftcampaign |